ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи
Гениальные математики. а) Каждому из двух
гениальных математиков сообщили по натуральному числу, причем им
известно, что эти числа отличаются на единицу. Они поочередно
спрашивают друг друга: "Известно ли тебе мое число?"
Докажите, что рано или поздно кто-то из них ответит "да". Сколько вопросов они зададут друг другу? (Математики
предполагаются правдивыми и бессмертными.)
Найти корни уравнения Пусть ka ≡ kb (mod m), k и m взаимно просты. Тогда a ≡ b (mod m). Дан выпуклый n-угольник A1...An. Пусть Pi (i = 1, ..., n) – такая точка на его границе, что прямая AiPi делит его площадь пополам. Известно, что все точки Pi не совпадают с вершинами и лежат на k сторонах n-угольника. Каково а) наименьшее; б) наибольшее возможное значение k при каждом данном n? Определить отношение двух чисел, если отношение их среднего арифметического к среднему геометрическому равно 25 : 24. В треугольнике ABC отметили центр вписанной окружности, основание высоты, опущенной на сторону AB, и центр вневписанной окружности, касающейся этой стороны и продолжений двух других. После этого сам треугольник стёрли. Восстановите его. |
Страница: << 1 2 3 4 5 >> [Всего задач: 24]
Дан четырёхугольник ABCD. Оказалось, что описанная окружность треугольника ABC, касается стороны CD, а описанная окружность треугольника ACD касается стороны AB. Докажите, что диагональ AC меньше, чем расстояние между серединами сторон AB и CD.
В треугольнике ABC провели биссектрису CL. Точки A1 и B1 симметричны точкам A и B относительно прямой CL, A2 и B2 симметричны точкам A и B относительно точки L. Пусть O1 и O2 – центры описанных окружностей треугольников AB1B2 и BA1A2. Докажите, что углы O1CA и O2CB равны.
В треугольнике ABC отметили центр вписанной окружности, основание высоты, опущенной на сторону AB, и центр вневписанной окружности, касающейся этой стороны и продолжений двух других. После этого сам треугольник стёрли. Восстановите его.
Дан треугольник ABC площади 1. Из вершины B опущен перпендикуляр BM на биссектрису угла C. Найдите площадь треугольника AMC.
Даны окружность и не лежащая на ней точка. Из всех треугольников, одна вершина которых совпадает с данной точкой, а две другие лежат на окружности, выбран треугольник наибольшей площади. Докажите, что он равнобедренный.
Страница: << 1 2 3 4 5 >> [Всего задач: 24]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке