Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Гениальные математики. а) Каждому из двух гениальных математиков сообщили по натуральному числу, причем им известно, что эти числа отличаются на единицу. Они поочередно спрашивают друг друга: "Известно ли тебе мое число?" Докажите, что рано или поздно кто-то из них ответит "да". Сколько вопросов они зададут друг другу? (Математики предполагаются правдивыми и бессмертными.)
б) Как изменится число заданных вопросов, если с самого начала известно, что данные числа не превосходят 1000?

Вниз   Решение


Найти корни уравнения   

ВверхВниз   Решение


Пусть  ka ≡ kb (mod m),  k и m взаимно просты. Тогда  a ≡ b (mod m).

ВверхВниз   Решение


Дан выпуклый n-угольник A1...An. Пусть Pi  (i = 1, ..., n)  – такая точка на его границе, что прямая AiPi делит его площадь пополам. Известно, что все точки Pi не совпадают с вершинами и лежат на k сторонах n-угольника. Каково  а) наименьшее;  б) наибольшее возможное значение k при каждом данном n?

ВверхВниз   Решение


Определить отношение двух чисел, если отношение их среднего арифметического к среднему геометрическому равно 25 : 24.

ВверхВниз   Решение


В треугольнике ABC отметили центр вписанной окружности, основание высоты, опущенной на сторону AB, и центр вневписанной окружности, касающейся этой стороны и продолжений двух других. После этого сам треугольник стёрли. Восстановите его.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 >> [Всего задач: 24]      



Задача 115867  (#11)

Темы:   [ Вписанные и описанные окружности ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Средняя линия трапеции ]
[ Признаки подобия ]
[ Неравенство Коши ]
Сложность: 4-
Классы: 8,9,10,11

Дан четырёхугольник ABCD. Оказалось, что описанная окружность треугольника ABC, касается стороны CD, а описанная окружность треугольника ACD касается стороны AB. Докажите, что диагональ AC меньше, чем расстояние между серединами сторон AB и CD.

Прислать комментарий     Решение

Задача 115868  (#12)

Темы:   [ Вписанные и описанные окружности ]
[ Свойства симметрий и осей симметрии ]
[ Свойства симметрии и центра симметрии ]
[ Отношение, в котором биссектриса делит сторону ]
[ Подобные треугольники ]
[ Четыре точки, лежащие на одной окружности ]
Сложность: 4-
Классы: 8,9,10,11

В треугольнике ABC провели биссектрису CL. Точки A1 и B1 симметричны точкам A и B относительно прямой CL, A2 и B2 симметричны точкам A и B относительно точки L. Пусть O1 и O2 – центры описанных окружностей треугольников AB1B2 и BA1A2. Докажите, что углы O1CA и O2CB равны.

Прислать комментарий     Решение

Задача 115869  (#13)

Темы:   [ Построение треугольников по различным точкам ]
[ Вписанные и описанные окружности ]
[ Вневписанные окружности ]
[ Окружность Аполлония ]
Сложность: 4-
Классы: 8,9,10,11

В треугольнике ABC отметили центр вписанной окружности, основание высоты, опущенной на сторону AB, и центр вневписанной окружности, касающейся этой стороны и продолжений двух других. После этого сам треугольник стёрли. Восстановите его.

Прислать комментарий     Решение

Задача 115870  (#14)

Темы:   [ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Площадь треугольника (через две стороны и угол между ними) ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3
Классы: 8,9,10,11

Дан треугольник ABC площади 1. Из вершины B опущен перпендикуляр BM на биссектрису угла C. Найдите площадь треугольника AMC.

Прислать комментарий     Решение

Задача 115871  (#15)

Темы:   [ Взаимное расположение высот, медиан, биссектрис и проч. ]
[ Против большей стороны лежит больший угол ]
[ Неравенства для элементов треугольника (прочее) ]
[ Площадь треугольника (через высоту и основание) ]
[ Симметрия помогает решить задачу ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3+
Классы: 8,9,10,11

Даны окружность и не лежащая на ней точка. Из всех треугольников, одна вершина которых совпадает с данной точкой, а две другие лежат на окружности, выбран треугольник наибольшей площади. Докажите, что он равнобедренный.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 >> [Всего задач: 24]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .