ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В пространстве заданы три луча: DA, DB и DC, имеющие общее начало D, причём ∠ADB = ∠ADC = ∠BDC = 90°. Сфера пересекает луч DA в точках A1 и A2, луч DB – в точках B1 и B2, луч DC – в точках C1 и C2. Найдите площадь треугольника A2B2C2, если площади треугольников DA1B1, DA1C1, DB1C1 и DA2B2 равны соответственно , 10, 6 и 40.

   Решение

Задачи

Страница: << 94 95 96 97 98 99 100 >> [Всего задач: 7526]      



Задача 116515

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ Площадь треугольника (прочее) ]
[ Перпендикулярность прямой и плоскости (прочее) ]
Сложность: 2+
Классы: 10,11

В пространстве заданы три луча: DA, DB и DC, имеющие общее начало D, причём ∠ADB = ∠ADC = ∠BDC = 90°. Сфера пересекает луч DA в точках A1 и A2, луч DB – в точках B1 и B2, луч DC – в точках C1 и C2. Найдите площадь треугольника A2B2C2, если площади треугольников DA1B1, DA1C1, DB1C1 и DA2B2 равны соответственно , 10, 6 и 40.

Прислать комментарий     Решение

Задача 35021

Темы:   [ Описанные четырехугольники ]
[ Диаметр, хорды и секущие ]
Сложность: 3-
Классы: 8,9

Каждая из сторон выпуклого четырехугольника пересекает некоторую окружность в двух точках, причем окружность высекает на сторонах четырехугольника равные хорды. Докажите, что в этот четырехугольник можно вписать окружность.
Прислать комментарий     Решение


Задача 35152

Темы:   [ Геометрическая прогрессия ]
[ Корни высших показателей (прочее) ]
Сложность: 3-
Классы: 8,9,10

Известно, что первый, десятый и сотый члены геометрической прогрессии являются натуральными числами. Верно ли, что 99-ый член этой прогрессии также является натуральным числом?
Прислать комментарий     Решение


Задача 35238

Темы:   [ Раскраски ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Правильный (равносторонний) треугольник ]
Сложность: 3-
Классы: 7,8,9

Плоскость раскрашена в два цвета. Докажите, что найдутся две точки одного цвета, расстояние между которыми равно 1.
Прислать комментарий     Решение


Задача 35280

Тема:   [ Последовательности (прочее) ]
Сложность: 3-
Классы: 8,9,10

Докажите, что 1/22+1/32+1/42+…+1/n2<1
Прислать комментарий     Решение


Страница: << 94 95 96 97 98 99 100 >> [Всего задач: 7526]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .