ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Занятия:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Доказать, что любой несамопересекающийся пятиугольник лежит по одну сторону от хотя бы одной своей стороны. Каждая из девяти прямых разбивает квадрат на два четырёхугольника, площади которых относятся как Периметр выпуклого четырехугольника равен 4.
Докажите, что его площадь не превосходит 1.
Дан многочлен x(x + 1)(x + 2)(x + 3). Найти его наименьшее значение. Из листа клетчатой бумаги размером 29×29 клеточек вырезали 99 квадратиков
2×2 (режут по линиям). Натуральное число A при делении на 1981 дало в остатке 35, при делении на 1982 оно дало в остатке также 35. Каков остаток от деления числа A на 14? Найдите все натуральные числа, не представимые в виде разности квадратов каких-либо натуральных чисел. На продолжениях сторон CA и AB треугольника ABC за точки A и B соответственно отложены отрезки AE = BC и BF = AC. Окружность касается отрезка BF в точке N, стороны BC и продолжения стороны AC за точку C. Точка M – середина отрезка EF. Докажите, что прямая MN параллельна биссектрисе угла A. Пусть ABCD — выпуклый четырехугольник, причем
AB + BD В неравнобедренном треугольнике ABC проведены высота из вершины A и биссектрисы из двух других вершин. На хоккейном поле лежат три шайбы А, В и С.
Хоккеист бьёт по одной из них так, что она пролетает между двумя другими. |
Страница: 1 2 3 4 >> [Всего задач: 18]
Докажите, что уравнение 3x² + 2 = y² нельзя решить в целых числах.
Несколько Совершенно Секретных Объектов соединены подземной железной дорогой таким образом, что каждый Объект напрямую соединён не более чем с тремя другими и от каждого Объекта можно добраться под землей до любого другого, сделав не более одной пересадки. Каково максимальное число Совершенно Секретных Объектов?
Пусть m и n – целые числа. Докажите, что mn(m + n) – чётное число.
На хоккейном поле лежат три шайбы А, В и С.
Хоккеист бьёт по одной из них так, что она пролетает между двумя другими.
Жители города Глупова пользуются купюрами только в 35 и 80 тыров. Сможет ли рассчитаться продавец с покупателем, который хочет купить
Страница: 1 2 3 4 >> [Всего задач: 18]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке