|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Занятия:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи В стране несколько городов, некоторые пары городов соединены двусторонними беспосадочными авиалиниями, принадлежащими k авиакомпаниям. Известно, что каждые две линии одной авиакомпании имеют общий конец. Докажите, что все города можно разбить на k + 2 группы так, что никакие два города из одной группы не соединены авиалинией. Стороны выпуклого пятиугольника ABCDE продолжили так, что образовалась пятиконечная звезда AHBKCLDMEN (рис.). Около треугольников — лучей звезды описали окружности. Докажите, что пять точек пересечения этих окружностей, отличных от A, B, C, D, E, лежат на одной окружности. На хоккейном поле лежат три шайбы А, В и С. Хоккеист бьёт по одной из них так, что она пролетает между двумя другими. Так он делает 25 раз. Могут ли после этого шайбы оказаться на исходных местах? |
Страница: 1 2 3 4 >> [Всего задач: 18]
Докажите, что уравнение 3x² + 2 = y² нельзя решить в целых числах.
Несколько Совершенно Секретных Объектов соединены подземной железной дорогой таким образом, что каждый Объект напрямую соединён не более чем с тремя другими и от каждого Объекта можно добраться под землей до любого другого, сделав не более одной пересадки. Каково максимальное число Совершенно Секретных Объектов?
Пусть m и n – целые числа. Докажите, что mn(m + n) – чётное число.
Так он делает 25 раз. Могут ли после этого шайбы оказаться на исходных местах?
Жители города Глупова пользуются купюрами только в 35 и 80 тыров. Сможет ли рассчитаться продавец с покупателем, который хочет купить
Страница: 1 2 3 4 >> [Всего задач: 18] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|