ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В 100 ящиках лежат яблоки, апельсины и бананы. Докажите, что можно так выбрать 51 ящик, что в них окажется не менее половины всех яблок, не менее половины всех апельсинов и не менее половины всех бананов. Построить прямоугольный треугольник, зная, что часть катета от вершины острого угла до точки касания с вписанной окружностью равна данному отрезку m , а противолежащий этому катету угол равен данному углу α . На рисунке изображен график функции у = kx + b . Сравните |k| и |b|. Найдите наименьшее натуральное значение n, при котором число n! делится на 990. Внутри правильного n-угольника со стороной a вписано n равных кругов так, что каждый круг касается двух смежных сторон многоугольника и двух соседних кругов. Найти площадь "звёздочки", ограниченной только дугами вписанных кругов. Известно, что В стаде, состоящем из лошадей, двугорбых и одногорбых верблюдов, в общей сложности 200 горбов. Найти такое трёхзначное число, удвоив которое, мы получим число, выражающее количество цифр, необходимое для написания всех последовательных целых чисел от единицы до этого искомого трёхзначного числа (включительно). Дан правильный 2n-угольник. Окружность проходит через вершины В и D параллелограмма АВСD и пересекает его стороны АВ, ВС, СD и DA в точках M, N, P и K соответственно. Докажите, что MK || NP. В равнобокой трапеции AВСD основания AD и ВС равны 12 и 6 соответственно, а высота равна 4. Сравните углы ВАС и САD. Может ли число, записываемое при помощи 100 нулей, 100 единиц и 100 двоек, быть точным квадратом? |
Страница: << 54 55 56 57 58 59 60 >> [Всего задач: 391]
Может ли число, записываемое при помощи 100 нулей, 100 единиц и 100 двоек, быть точным квадратом?
Существует ли набор чисел, сумма которых равна 1, а сумма их квадратов меньше 0,01?
Доказать, что при любом целом положительном n сумма
Существуют ли шесть таких последовательных натуральных чисел, что наименьшее общее кратное первых трёх из них больше, чем наименьшее общее кратное трёх следующих?
В узлах клетчатой плоскости отмечено пять точек. Доказать, что есть две из них, середина отрезка между которыми тоже попадает в узел.
Страница: << 54 55 56 57 58 59 60 >> [Всего задач: 391]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке