Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

В коробке лежат карточки, занумерованные натуральными числами от 1 до 2006. На карточке с номером 2006 лежит карточка с номером 2005 и т. д. до 1. За ход разрешается взять одну верхнюю карточку (из любой коробки) и переложить ее либо на дно пустой коробки, либо на карточку с номером на единицу больше. Сколько пустых коробок нужно для того, чтобы переложить все карточки в другую коробку?

Вниз   Решение


Докажите, что уравнение  1/x1/y = 1/n  имеет единственное решение в натуральных числах тогда и только тогда, когда n – простое число.

ВверхВниз   Решение


Бумажная лента постоянной ширины завязана простым узлом и затем стянута так, чтобы узел стал плоским (см. рис.).
Докажите, что узел имеет форму правильного пятиугольника.

ВверхВниз   Решение


Решите уравнение  x² – 5y² = 1  в целых числах.

ВверхВниз   Решение


Можно ли намотать нерастяжимую ленту на бесконечный конус так, чгобы сделать вокруг его оси бесконечно много оборотов? Ленту нельзя наматывать на вершину конуса, а также разрезать и перекручивать. При необходимости можно считать, что она бесконечна, а угол между осью и образующей конуса достаточно мал.

ВверхВниз   Решение


Контуры выпуклых многоугольников F и G не имеют общих точек, причём G расположен внутри F. Хорду многоугольника F – отрезок, соединяющий две точки контура F, назовём опорной для G, если она пересекается с G только по точкам контура: содержит либо только вершину, либо сторону G.
  а) Докажите, что найдётся опорная хорда, середина которой принадлежит контуру G.
  б) Докажите, что найдутся две такие хорды.

ВверхВниз   Решение


Докажите, что разность числа, имеющего нечётное количество цифр, и числа, записанного теми же цифрами, но в обратном порядке, делится на 99.

Вверх   Решение

Задачи

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 99]      



Задача 30632  (#046)

Темы:   [ Признаки делимости на 11 ]
[ Четность и нечетность ]
Сложность: 3
Классы: 7,8

A – шестизначное число, в записи которого по одному разу встречаются цифры 1, 2, 3, 4, 5, 6. Докажите, что A не делится на 11.

Прислать комментарий     Решение

Задача 30633  (#047)

Темы:   [ Признаки делимости на 3 и 9 ]
[ Признаки делимости на 11 ]
[ Делимость чисел. Общие свойства ]
Сложность: 3
Классы: 7,8,9

Докажите, что разность числа, имеющего нечётное количество цифр, и числа, записанного теми же цифрами, но в обратном порядке, делится на 99.

Прислать комментарий     Решение

Задача 30634  (#048)

Тема:   [ Десятичная система счисления ]
Сложность: 3+
Классы: 7,8

Можно ли составить из цифр 2, 3, 4, 9 (каждую цифру можно использовать сколько угодно раз) два числа, одно из которых в 19 раз больше другого?

Прислать комментарий     Решение

Задача 30635  (#049)

Темы:   [ Десятичная система счисления ]
[ Делимость чисел. Общие свойства ]
Сложность: 3
Классы: 7,8

Сумма двух цифр a и b делится на 7. Докажите, что число  aba  также делится на 7.

Прислать комментарий     Решение

Задача 30636  (#050)

Темы:   [ Десятичная система счисления ]
[ Делимость чисел. Общие свойства ]
Сложность: 3+
Классы: 7,8,9

Сумма цифр трёхзначного числа равна 7. Докажите, что это число делится на 7 тогда и только тогда, когда две его последние цифры равны.

Прислать комментарий     Решение

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 99]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .