ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
год/номер:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Известно, что число a + 1/a – целое. Докажите, что число a² + 1/a² – тоже целое. На основании AD трапеции ABCD взята точка E так, что AE = BC. Отрезки CA и CE пересекают диагональ BD в точках O и P соответственно. Докажите, что среди любых шести человек есть либо трое попарно знакомых, либо трое попарно незнакомых.
Найдите произведения следующих формальных
степенных рядов:
Общие перпендикуляры к противоположным сторонам пространственного четырёхугольника взаимно перпендикулярны. Рассмотрим число а) меньше 1/10; б) меньше 1/12; в) больше 1/15. 9 кг ирисок стоят дешевле 10 рублей, а 10 кг тех же ирисок – дороже 11 рублей. Сколько стоит 1 кг этих ирисок? |
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 363]
Цены снижены на 20%. На сколько процентов больше можно купить товаров на ту же зарплату?
Сколько двоек будет в разложении на простые множители числа 1984! ?
В ряд выписаны в порядке возрастания числа, делящиеся на 9: 9, 18, 27, 36, ... . Под каждым числом этого ряда записана его сумма цифр.
9 кг ирисок стоят дешевле 10 рублей, а 10 кг тех же ирисок – дороже 11 рублей. Сколько стоит 1 кг этих ирисок?
Два гроссмейстера по очереди ставят на шахматную доску ладьи (за один ход – одну ладью) так, чтобы они не били друг друга. Тот, кто не сможет поставить ладью, проигрывает. Кто выиграет при правильной игре – первый или второй гроссмейстер?
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 363]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке