Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
год/номер:
Фильтр
Сложность с по   Класс с по  
Выбрано 16 задач
Версия для печати
Убрать все задачи

При каких a многочлен  P(x) = a³x5 + (1 – a)x4 + (1 + a³)x² + (1 – 3a)xa³  делится на  x – 1?

Вниз   Решение


Докажите, что ни при каком натуральном m число  1998m – 1  не делится на 1000m – 1.

ВверхВниз   Решение


Докажите, что пучок лучей света, параллельных оси параболы, после отражения от параболы сходится в ее фокусе.

ВверхВниз   Решение


Сколько цифр имеет число 2100?

ВверхВниз   Решение


Постройте треугольник по двум углам A, B и периметру P.

ВверхВниз   Решение


Диагонали четырехугольника ABCD пересекаются в точке O. Докажите, что  SAOB = SCOD тогда и только тогда, когда  BC || AD.

ВверхВниз   Решение


В четырёхугольник ABCD вписан эллипс с фокусом F. Докажите, что $ \angle$AFB + $ \angle$CFD = 180o.

ВверхВниз   Решение


Потроить треугольник по высоте к стороне а ha, медиане к стороне a ma и $ \angle$A.

ВверхВниз   Решение


Длины сторон параллелограмма равны a и b, длины диагоналей — m и n. Докажите, что  a4 + b4 = m2n2 тогда и только тогда, когда острый угол параллелограмма равен  45o.

ВверхВниз   Решение


Пусть AA' и BB' — сопряженные диаметры эллипса с центром O. Докажите, что:
а) площадь треугольника AOB не зависит от выбора сопряженных диаметров;
б) величина OA2+OB2 не зависит от выбора сопряженных диаметров.

ВверхВниз   Решение


На окружности отмечено десять точек. Сколько существует незамкнутых несамопересекающихся девятизвенных ломаных с вершинами в этих точках?

ВверхВниз   Решение


Двойным отношением четырёх комплесных чисел называется число     (см. задачу 61180). Пусть w1, w2, w3, w4 – четыре точки плоскости, в которые дробно-линейное отображение    переводит данные четыре точки z1, z2, z3, z4. Докажите, что
W(w1, w2, w3, w4) = W(z1, z2, z3, z4).

ВверхВниз   Решение


На окружности даны точки A1, A2,..., A16. Построим все возможные выпуклые многоугольники, вершины которых находятся среди точек A1, A2,..., A16. Разобьём эти многоугольники на две группы. В первую группу будут входить все многоугольники, у которых A1 является вершиной. Во вторую группу входят все многоугольники, у которых A1 в число вершин не входит. В какой группе больше многоугольников?

ВверхВниз   Решение


Треугольник ABC вписан в окружность радиуса R с центром O. Докажите, что площадь подерного треугольника точки P относительно треугольника ABC (см. задачу 5.99) равна  $ {\frac{1}{4}}$$ \left\vert\vphantom{1-\frac{d^2}{R^2}}\right.$1 - $ {\frac{d^2}{R^2}}$$ \left.\vphantom{1-\frac{d^2}{R^2}}\right\vert$SABC, где d = PO.

ВверхВниз   Решение


Докажите, что середины параллельных хорд параболы лежат на одной прямой, параллельной оси параболы.

ВверхВниз   Решение


Придя в тир, Петя купил 5 пуль. За каждый успешный выстрел ему дают еще 5 пуль. Петя утверждает, что он сделал 50 выстрелов и 8 раз попал в цель, а его друг Вася говорит, что этого не может быть. Кто из мальчиков прав?

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 363]      



Задача 32013

Темы:   [ Подсчет двумя способами ]
[ Числовые таблицы и их свойства ]
[ Доказательство от противного ]
Сложность: 2
Классы: 6,7,8

Можно ли в прямоугольной таблице 5×10 так расставить числа, чтобы сумма чисел каждой строки равнялась бы 30, а сумма чисел каждого столбца равнялась бы 10?

Прислать комментарий     Решение

Задача 32038

Темы:   [ Измерение длин отрезков и мер углов. Смежные углы. ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 2
Классы: 6,7,8

Можно ли провести из одной точки на плоскости пять лучей так, чтобы среди образованных ими углов было ровно четыре острых?
Рассматриваются углы не только между соседними, но и между любыми двумя лучами.

Прислать комментарий     Решение

Задача 32041

Тема:   [ Принцип Дирихле (прочее) ]
Сложность: 2
Классы: 5,6,7,8

В поход пошли 20 туристов. Самому старшему из них 35 лет, а самому младшему 20 лет. Верно ли, что среди туристов есть одногодки?

Прислать комментарий     Решение

Задача 32043

Темы:   [ Арифметика. Устный счет и т.п. ]
[ Уравнения в целых числах ]
Сложность: 2
Классы: 5,6,7

Придя в тир, Петя купил 5 пуль. За каждый успешный выстрел ему дают еще 5 пуль. Петя утверждает, что он сделал 50 выстрелов и 8 раз попал в цель, а его друг Вася говорит, что этого не может быть. Кто из мальчиков прав?

Прислать комментарий     Решение

Задача 32050

Тема:   [ Турниры и турнирные таблицы ]
Сложность: 2
Классы: 6,7,8

В турнире по олимпийской системе (проигравший выбывает) участвует 50 боксеров.
Какое наименьшее количество боев надо провести, чтобы выявить победителя?

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 363]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .