ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
год/номер:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Впишите в данный остроугольный треугольник ABC
квадрат KLMN так, чтобы вершины K и N лежали на сторонах AB
и AC, а вершины L и M — на стороне BC.
а) Для данного треугольника ABC, все углы которого меньше
120o,
найдите точку, сумма расстояний от которой до вершин минимальна.
Если на каждой грани выпуклого многогранника выбрать по точке и провести из этой точки направленный перпендикулярно соответствующей грани во внешнюю сторону вектор, длина которого равна площади этой грани, то сумма всех таких векторов окажется равна нулю. Докажите это. У натурального числа A ровно 100 различных делителей (включая 1 и A). Найдите их произведение. На дуге BC окружности, описанной около равностороннего
треугольника ABC, взята произвольная точка P.
Отрезки AP и BC пересекаются в точке Q. Докажите,
что
1/PQ = 1/PB + 1/PC.
В ребусе $\text{ТУР}+\text{ТУР}+\text{ТУР}+...+\text{ТУР}=\text{ТУРЛОМ}$ одинаковые буквы заменяют одинаковые цифры, разные буквы заменяют разные цифры. Часть одинаковых слагаемых мы заменили многоточием. Сколько всего может быть ТУРов, чтобы ребус имел решение? Найдите наименьшее и наибольшее количества. Прямые AP, BP и CP пересекают описанную
окружность треугольника ABC в точках A2, B2 и C2; A1B1C1 — подерный треугольник точки P относительно
треугольника ABC (см. задачу 5.99). Докажите, что
На сторонах треугольника ABC внешним образом
построены правильные треугольники ABC1, AB1C и A1BC.
Пусть P и Q — середины отрезков A1B1 и A1C1. Докажите,
что треугольник APQ правильный.
В треугольник
Ta = На окружности взяты точки A, B, C и D. Прямые AB
и CD пересекаются в точке M. Докажите, что
AC . AD/AM = BC . BD/BM.
При каких значениях параметра a многочлен P(x) = xn + axn–2 (n ≥ 2) делится на x – 2 ? Можно ли разменять 25 рублей при помощи десяти купюр достоинством в 1, 3 и 5 рублей? Известно, что в выпуклом n-угольнике (n > 3) никакие три диагонали не проходят через одну точку. Правильные треугольники ABC, CDE, EHK (вершины обходятся в направлении против часовой стрелки) расположены на плоскости так,
что
На сторонах AB и AC треугольника ABC внешним
образом построены правильные треугольники ABC' и AB'C.
Точка M делит сторону BC в отношении BM : MC = 3 : 1;
K и L — середины сторон AC' и B'C. Докажите, что углы
треугольника KLM равны
30o,
60o и
90o.
Правильный треугольник сложен из одинаковых прямоугольных (красных) и одинаковых равнобедренных (зелёных) треугольников так, как показано на рисунке. Чему равна площадь правильного треугольника, если площадь зелёного треугольника равна 1? При необходимости округлите ответ до двух знаков после запятой. Известно, что Известно, что а, b и c – различные составные натуральные числа, но каждое из них не делится ни на одно из целых чисел от 2 до 100 включительно. Докажите, что если эти числа – наименьшие из возможных, то их произведение abc является кубом натурального числа. Вася сложил четвёртую степень и квадрат некоторого числа, отличного от нуля, и сообщил результат Пете. Дан треугольник ABC. Требуется разрезать его на наименьшее число частей так, чтобы, перевернув эти части на другую сторону, из них можно было сложить тот же треугольник ABC. Найти целое число a, при котором (x – a)(x – 10) + 1 разлагается в произведение (x + b)(x + c) двух множителей с целыми b и c. Докажите, что
4S = (a2 - (b - c)2)ctg( Даны точка X и правильный треугольник ABC. Докажите, что из отрезков
XA, XB и XC можно составить треугольник, причем этот треугольник
вырожденный тогда и только тогда, когда точка X лежит на описанной окружности
треугольника ABC (Помпею).
Дан правильный семиугольник A1A2A3A4A5A6A7. Прямые A2A3 и A5A6 пересекаются в точке X, а прямые A3A5 и A1A6 – в точке Y. В турнире по олимпийской системе (проигравший выбывает) участвует 50 боксеров. |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 363]
Можно ли в прямоугольной таблице 5×10 так расставить числа, чтобы сумма чисел каждой строки равнялась бы 30, а сумма чисел каждого столбца равнялась бы 10?
Можно ли провести из одной точки на плоскости пять лучей так, чтобы среди образованных ими углов было ровно четыре острых?
В поход пошли 20 туристов. Самому старшему из них 35 лет, а самому младшему 20 лет. Верно ли, что среди туристов есть одногодки?
Придя в тир, Петя купил 5 пуль. За каждый успешный выстрел ему дают еще 5 пуль. Петя утверждает, что он сделал 50 выстрелов и 8 раз попал в цель, а его друг Вася говорит, что этого не может быть. Кто из мальчиков прав?
В турнире по олимпийской системе (проигравший выбывает) участвует 50 боксеров.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 363]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке