Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 14 задач
Версия для печати
Убрать все задачи

Правильный треугольник со стороной 3 разбит на девять треугольных клеток, как показано на рисунке. В этих клетках изначально записаны нули. За один ход можно выбрать два числа, находящиеся в соседних по стороне клетках, и либо прибавить к обоим по единице, либо вычесть из обоих по единице. Петя хочет сделать несколько ходов так, чтобы после этого в клетках оказались записаны в некотором порядке последовательные натуральные числа  n, n + 1, ..., n + 8.  При каких n он сможет это сделать?

Вниз   Решение


Найдите углы выпуклого четырёхугольника ABCD, в котором $ \angle$BAC = 30o, $ \angle$ACD = 40o, $ \angle$ADB = 50o, $ \angle$CBD = 60o и $ \angle$ABC + $ \angle$ADC = 180o.

ВверхВниз   Решение


Четыре чёрные коровы и три рыжие дают за пять дней столько молока, сколько три чёрные коровы и пять рыжих дают за четыре дня.
У каких коров больше удои, у чёрных или у рыжих?

ВверхВниз   Решение


Попробуйте быстро найти сумму всех цифр в этой таблице:

ВверхВниз   Решение


За некоторое время мальчик проехал на велосипеде целое число раз по периметру квадратной школы в одном направлении с постоянной по величине скоростью 10 км/ч. В это же время по периметру школы прогуливался его папа со скоростью 5 км/ч, при этом он мог менять направление движения. Папа видел мальчика в те и только те моменты, когда они находились на одной стороне школы. Мог ли папа видеть мальчика больше половины указанного времени?

ВверхВниз   Решение


На плоскости нарисовано 12 прямых, проходящих через точку О. Докажите, что можно выбрать две из них так, что угол между ними будет меньше 17 градусов.

ВверхВниз   Решение


Существует ли треугольник, в котором одна сторона равна какой-то из его высот, другая – какой-то из биссектрис, а третья – какой-то из медиан?

ВверхВниз   Решение


В выпуклом четырёхугольнике ABCD лучи AB и DC пересекаются в точке K. На биссектрисе угла AKD нашлась такая точка P, что прямые BP и CP делят пополам отрезки AC и BD соответственно. Докажите, что  AB = CD.

ВверхВниз   Решение


Шахматная ассоциация решила оснастить всех своих сотрудников такими телефонными номерами, которые бы набирались на кнопочном телефоне ходом коня. Например, ходом коня набирается телефон 340-49-27. При этом телефонный номер не может начинаться ни с цифры 0, ни с цифры 8.
7 8 9
4 5 6
1 2 3
  0  

Напишите программу, определяющую количество телефонных номеров длины N, набираемых ходом коня.

Входные данные

Во входном файле записано целое число N (1 ≤ N ≤ 100).

Выходные данные

Выведите в выходной файл искомое количество телефонных номеров.

Пример входного файла

2

Пример выходного файла

16

ВверхВниз   Решение


В треугольнике ABC угол С в три раза больше угла A. На стороне AB взята такая точка D, что  BD = BC.  Найдите CD, если  AD = 4.

ВверхВниз   Решение


Требуется подсчитать количество последовательностей длины N, состоящих из 0 и 1, в которых никакие две единицы не стоят рядом.

Входные данные

Во входном файле записано целое число N (1 ≤ N ≤ 100).

Выходные данные

В выходной файл вывести количество искомых последовательностей.

Пример входного файла

5

Пример выходного файла

13

ВверхВниз   Решение


Петя выбрал 10 последовательных натуральных чисел и каждое записал либо красным, либо синим карандашом (оба цвета присутствуют).
Может ли сумма наименьшего общего кратного всех красных чисел и наименьшего общего кратного всех синих чисел оканчиваться на 2016?

ВверхВниз   Решение


Автор: Фольклор

Квадрат 4 × 4 называется магическим, если в его клетках встречаются все числа от 1 до 16, а суммы чисел в столбцах, строках и двух диагоналях равны между собой. Шестиклассник Сеня начал составлять магический квадрат и поставил в какую-то клетку число 1. Его младший брат Лёня решил ему помочь и поставил числа 2 и 3 в клетки, соседние по стороне с числом 1. Сможет ли Сеня после такой помощи составить магический квадрат?

ВверхВниз   Решение


а) Есть 10 монет. Известно, что одна из них фальшивая (по весу тяжелее настоящих). Как за три взвешивания на чашечных весах без гирь определить фальшивую монету?
    б) Как определить фальшивую монету за три взвешивания, если монет 27?

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 7]      



Задача 32816  (#01)

Тема:   [ Арифметика. Устный счет и т.п. ]
Сложность: 2+
Классы: 7,8

Лена и Ира покупали на рынке виноград. Когда взвешивали Ленину покупку, весы показывали два килограмма, когда Ирину --- то три. Потом они вместе положили свой виноград на весы, и стрелка остановилась на 4,5 кг. Сколько на самом деле весили их покупки?
Прислать комментарий     Решение


Задача 32817  (#02)

Тема:   [ Взвешивания ]
Сложность: 3+
Классы: 7,8,9

а) Есть 10 монет. Известно, что одна из них фальшивая (по весу тяжелее настоящих). Как за три взвешивания на чашечных весах без гирь определить фальшивую монету?
    б) Как определить фальшивую монету за три взвешивания, если монет 27?
Прислать комментарий     Решение


Задача 32818  (#03)

Темы:   [ Делимость чисел. Общие свойства ]
[ Арифметическая прогрессия ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 7,8,9

а) Можно ли разложить 20 монет достоинством в 1, 2, 3, ..., 19, 20 мунгу по трём карманам так, чтобы в каждом кармане оказалась одинаковая сумма денег?

б) А если добавить еще один тугрик? (Как известно, один тугрик равен ста мунгу.)

Прислать комментарий     Решение

Задача 32819  (#04)

Тема:   [ Взвешивания ]
Сложность: 3
Классы: 7,8

Фальшивомонетчик Вася изготовил четыре монеты достоинством 1, 3, 4, 7 квача, которые должны весить 1, 3, 4, 7 граммов соответственно. Но одну из этих монет он сделал некачественно – с неправильным весом. Как за два взвешивания на чашечных весах без гирек определить "неправильную" монету?
Прислать комментарий     Решение


Задача 32820  (#05)

Тема:   [ Взвешивания ]
Сложность: 3
Классы: 7,8,9

Известно, что среди нескольких монет имеется ровно одна фальшивая (отличается по весу от настоящих). С помощью двух взвешиваний на чашечных весах без гирь определите, легче или тяжелее фальшивая монета настоящей (находить ее не надо), если монет
а) 100;
б) 99;
в) 98?
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 7]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .