|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи В треугольнике ABC угол B равен 60o, биссектрисы AD и CE пересекаются в точке O. Докажите, что OD = OE.
Остроугольный равнобедренный треугольник ABC (AB = AC) вписан в окружность с центром O. Лучи BO и CO пересекают стороны AC и AB в точках B' и C' соответственно. Через точку C' проведена прямая l, параллельная прямой AC. Докажите, что прямая l касается описанной окружности ω треугольника B'OC. Известно, что среди нескольких монет имеется ровно одна фальшивая (отличается по весу от настоящих). С помощью двух взвешиваний на чашечных весах без гирь определите, легче или тяжелее фальшивая монета настоящей (находить ее не надо), если монет а) 100; б) 99; в) 98? а) Есть 10 монет. Известно, что одна из них фальшивая (по весу тяжелее настоящих). Как за три взвешивания на чашечных весах без гирь определить фальшивую монету? б) Как определить фальшивую монету за три взвешивания, если монет 27? |
Страница: 1 2 >> [Всего задач: 7]
б) Как определить фальшивую монету за три взвешивания, если монет 27?
б) А если добавить еще один тугрик? (Как известно, один тугрик равен ста мунгу.)
а) 100; б) 99; в) 98?
Страница: 1 2 >> [Всего задач: 7] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|