ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Интернет-ресурсы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Площадь равнобедренной трапеции, описанной около окружности, равна S, а высота трапеции в два раза меньше её боковой стороны. Существует ли такое значение x, что выполняется равенство arcsin2x + arccos2x = 1? Доказать, что уравнение 19x² – 76y² = 1976 не имеет решений в целых числах. В равнобедренном треугольнике ABC (AB = BC) биссектриса BD в два раза короче биссектрисы AE. Найдите углы треугольника ABC. Хорды AB, AC и BC окружности равны соответственно 15, 21 и 24. Точка D – середина дуги CB. На какие части BE и EC делится хорда BC прямой AD? На клетчатой плоскости со стороной клетки 1 нарисован круг радиуса 1000. Докажите, что суммарная площадь клеток, целиком лежащих внутри этого круга, составляет не менее 99% площади круга. На плоскости нарисовано несколько прямых (не меньше двух), никакие две из которых не параллельны и никакие три не проходят через одну точку. Докажите, что среди частей, на которые эти прямые делят плоскость, найдется хотя бы один угол. На окружности отмечено n точек, причём известно, что для каждых двух отмеченных точек одна из дуг, соединяющих их, имеет величину, меньшую 120°. Докажите, что все точки лежат на одной дуге величиной 120°. Около окружности радиуса R описана равнобедренная трапеция ABCD. E и K – точки касания этой окружности с боковыми сторонами трапеции. Угол между основанием AB и боковой стороной AD трапеции равен 60°. Докажите, что EK || AB и найдите площадь трапеции ABKE. Дана клетчатая таблица 99×99, каждая клетка которой окрашена в чёрный или в белый цвет. Разрешается одновременно перекрасить все клетки некоторого столбца или некоторой строки в тот цвет, клеток которого в этом столбце или в этой строке до перекрашивания было больше. Всегда ли можно добиться того, чтобы все клетки таблицы стали покрашены в один цвет? Даны точки A и B. Где на прямой AB расположены точки, расстояние от которых до точки B больше, чем до точки A? При организации экспедиции на Эверест участниками было установлено
четыре высотных лагеря (не считая базового), на растоянии дня пути друг
от друга, после чего все спустились вниз. Пересчитав запасы, руководитель
решил, что надо занести еще один баллон кислорода в четвертый лагерь, а
потом всем опять вернуться вниз на отдых. При этом каждый участник
7 волков съедают 7 баранов за 7 дней. За сколько дней 9 волков съедят 9 баранов? Разбейте куб на три пирамиды. |
Страница: << 175 176 177 178 179 180 181 >> [Всего задач: 7526]
Из круга S радиуса 1 вырезали круг S' радиуса 1/2, граница которого проходит через центр исходного круга. Определите, где находится центр тяжести полученной фигуры F.
Разбейте куб на три пирамиды.
На доске размером 8×8 двое по очереди закрашивают клетки так, чтобы не появлялось закрашенных уголков из трёх клеток. Проигрывает тот, кто не может сделать ход. Кто выигрывает при правильной игре?
Каждый вечер Иван Таранов приходит в случайное время на автобусную остановку. На этой остановке останавливаются два маршрута - на одном из них Иван может ехать к себе домой, а на другом - в гости к другу Козявкину. Иван ждет первого автобуса и в зависимости от того, какой автобус подошел, он едет либо домой, либо к другу. Через некоторое время Иван заметил, что в гостях у Козявкина он оказывается при этом примерно в два раза чаще, чем дома. На основе этого Иван делает вывод, что один из автобусов ходит в два раза чаще другого. Прав ли он? Могут ли при выполнении условия задачи автобусы ходить с одинаковой частотой? (Предполагается, что автобусы ходят не случайным образом, а по некоторому расписанию.)
На клетчатой плоскости со стороной клетки 1 нарисован круг радиуса 1000. Докажите, что суммарная площадь клеток, целиком лежащих внутри этого круга, составляет не менее 99% площади круга.
Страница: << 175 176 177 178 179 180 181 >> [Всего задач: 7526]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке