Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 14 задач
Версия для печати
Убрать все задачи

Площадь равнобедренной трапеции, описанной около окружности, равна S, а высота трапеции в два раза меньше её боковой стороны.
Найдите радиус окружности.

Вниз   Решение


Существует ли такое значение x, что выполняется равенство  arcsin2x + arccos2x = 1?

ВверхВниз   Решение


Доказать, что уравнение  19x² – 76y² = 1976  не имеет решений в целых числах.

ВверхВниз   Решение


В равнобедренном треугольнике ABC  (AB = BC)  биссектриса BD в два раза короче биссектрисы AE. Найдите углы треугольника ABC.

ВверхВниз   Решение


Хорды AB, AC и BC окружности равны соответственно 15, 21 и 24. Точка D – середина дуги CB. На какие части BE и EC делится хорда BC прямой AD?

ВверхВниз   Решение


На клетчатой плоскости со стороной клетки 1 нарисован круг радиуса 1000. Докажите, что суммарная площадь клеток, целиком лежащих внутри этого круга, составляет не менее 99% площади круга.

ВверхВниз   Решение


На плоскости нарисовано несколько прямых (не меньше двух), никакие две из которых не параллельны и никакие три не проходят через одну точку. Докажите, что среди частей, на которые эти прямые делят плоскость, найдется хотя бы один угол.

ВверхВниз   Решение


На окружности отмечено n точек, причём известно, что для каждых двух отмеченных точек одна из дуг, соединяющих их, имеет величину, меньшую 120°. Докажите, что все точки лежат на одной дуге величиной 120°.

ВверхВниз   Решение


Около окружности радиуса R описана равнобедренная трапеция ABCD. E и K – точки касания этой окружности с боковыми сторонами трапеции. Угол между основанием AB и боковой стороной AD трапеции равен 60°. Докажите, что  EK || AB  и найдите площадь трапеции ABKE.

ВверхВниз   Решение


Дана клетчатая таблица 99×99, каждая клетка которой окрашена в чёрный или в белый цвет. Разрешается одновременно перекрасить все клетки некоторого столбца или некоторой строки в тот цвет, клеток которого в этом столбце или в этой строке до перекрашивания было больше. Всегда ли можно добиться того, чтобы все клетки таблицы стали покрашены в один цвет?

ВверхВниз   Решение


Даны точки A и B. Где на прямой AB расположены точки, расстояние от которых до точки B больше, чем до точки A?

ВверхВниз   Решение


При организации экспедиции на Эверест участниками было установлено четыре высотных лагеря (не считая базового), на растоянии дня пути друг от друга, после чего все спустились вниз. Пересчитав запасы, руководитель решил, что надо занести еще один баллон кислорода в четвертый лагерь, а потом всем опять вернуться вниз на отдых. При этом каждый участник
1) может нести вверх не больше трех баллонов,
2) сам тратит в день ровно один баллон кислорода.
Какое наименьшее количество баллонов придется взять из лагеря для достижения поставленной цели? (Оставлять баллоны можно только в лагерях.)

ВверхВниз   Решение


7 волков съедают 7 баранов за 7 дней. За сколько дней 9 волков съедят 9 баранов?

ВверхВниз   Решение


Разбейте куб на три пирамиды.

Вверх   Решение

Задачи

Страница: << 175 176 177 178 179 180 181 >> [Всего задач: 7526]      



Задача 35157

Тема:   [ Теорема о группировке масс ]
Сложность: 3
Классы: 9,10

Из круга S радиуса 1 вырезали круг S' радиуса 1/2, граница которого проходит через центр исходного круга. Определите, где находится центр тяжести полученной фигуры F.
Прислать комментарий     Решение


Задача 35159

Темы:   [ Стереометрия (прочее) ]
[ Разрезания на части, обладающие специальными свойствами ]
Сложность: 3
Классы: 8,9,10,11

Разбейте куб на три пирамиды.
Прислать комментарий     Решение


Задача 35170

Тема:   [ Симметричная стратегия ]
Сложность: 3
Классы: 7,8

На доске размером 8×8 двое по очереди закрашивают клетки так, чтобы не появлялось закрашенных уголков из трёх клеток. Проигрывает тот, кто не может сделать ход. Кто выигрывает при правильной игре?

Прислать комментарий     Решение

Задача 35178

Темы:   [ Парадоксы ]
[ Теория вероятностей (прочее) ]
Сложность: 3
Классы: 8,9,10,11

Каждый вечер Иван Таранов приходит в случайное время на автобусную остановку. На этой остановке останавливаются два маршрута - на одном из них Иван может ехать к себе домой, а на другом - в гости к другу Козявкину. Иван ждет первого автобуса и в зависимости от того, какой автобус подошел, он едет либо домой, либо к другу. Через некоторое время Иван заметил, что в гостях у Козявкина он оказывается при этом примерно в два раза чаще, чем дома. На основе этого Иван делает вывод, что один из автобусов ходит в два раза чаще другого. Прав ли он? Могут ли при выполнении условия задачи автобусы ходить с одинаковой частотой? (Предполагается, что автобусы ходят не случайным образом, а по некоторому расписанию.)
Прислать комментарий     Решение


Задача 35180

Темы:   [ Неравенства с площадями ]
[ Арифметика. Устный счет и т.п. ]
Сложность: 3
Классы: 9,10

На клетчатой плоскости со стороной клетки 1 нарисован круг радиуса 1000. Докажите, что суммарная площадь клеток, целиком лежащих внутри этого круга, составляет не менее 99% площади круга.
Прислать комментарий     Решение


Страница: << 175 176 177 178 179 180 181 >> [Всего задач: 7526]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .