Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 11 задач
Версия для печати
Убрать все задачи

Много лет каждый день в полдень из Гавра в Нью-Йорк отправляется почтовый пароход и в то же время из Нью-Йорка отходит идущий в Гавр пароход той же компании. Каждый из этих пароходов находится в пути ровно семь суток, и идут они по одному и тому же пути.
Сколько пароходов своей компании встретит на своём пути пароход, идущий из Гавра в Нью-Йорк?

Вниз   Решение


Существуют ли шесть таких последовательных натуральных чисел, что наименьшее общее кратное первых трёх из них больше, чем наименьшее общее кратное трёх следующих?

ВверхВниз   Решение


Как на комплексной плоскости определить показательную функцию az?

ВверхВниз   Решение


Пароход шёл от Нижнего Новгорода до Астрахани 5 суток, а обратно – 7 суток. Сколько дней плывут плоты от Нижнего Новгорода до Астрахани?

ВверхВниз   Решение


Найдите остаток от деления 8900 на 29.

ВверхВниз   Решение


Какое наименьшее натуральное число не является делителем 50!?

ВверхВниз   Решение


Постройте окружность, касательные к которой, проведенные из трех данных точек A, B и C, имели бы длины a, b и c соответственно.

ВверхВниз   Решение


На плоскости дано 300 точек, никакие 3 которых не лежат на одной прямой. Докажите, что существует 100 попарно не пересекающихся треугольников с вершинами в этих точках.

ВверхВниз   Решение


В треугольнике ABC с углом A, равным  120o, биссектрисы AA1, BB1 и CC1 пересекаются в точке O. Докажите, что  $ \angle$A1C1O = 30o.

ВверхВниз   Решение


Докажите, что  3003000 – 1  делится на 1001.

ВверхВниз   Решение


а) В трёхзначном числе зачеркнули первую цифру слева, затем полученное двузначное число умножили на 7 и получили исходное трёхзначное число. Найдите такое число.
б) В трёхзначном числе зачеркнули среднюю цифру и получили число в 6 раз меньше исходного. Найдите такое трёхзначное число.

Вверх   Решение

Задачи

Страница: << 107 108 109 110 111 112 113 >> [Всего задач: 7526]      



Задача 35383

Темы:   [ Уравнения в целых числах ]
[ Десятичная система счисления ]
Сложность: 3-
Классы: 7,8

а) В трёхзначном числе зачеркнули первую цифру слева, затем полученное двузначное число умножили на 7 и получили исходное трёхзначное число. Найдите такое число.
б) В трёхзначном числе зачеркнули среднюю цифру и получили число в 6 раз меньше исходного. Найдите такое трёхзначное число.

Прислать комментарий     Решение

Задача 35387

Тема:   [ Наглядная геометрия в пространстве ]
Сложность: 3-
Классы: 7,8,9

Из полоски бумаги шириной 1 см склеили цилиндрическое кольцо с длиной окружности 4 см. Можно ли из этого кольца изготовить квадрат, имеющий площадь: а) 1 кв.см; б) 2 кв.см. Бумагу разрешается склеивать, складывать, но НЕЛЬЗЯ резать.
Прислать комментарий     Решение


Задача 35413

Тема:   [ Пересекающиеся окружности ]
Сложность: 3-
Классы: 8,9,10

На плоскости нарисовано пять различных окружностей. Известно, что каждые четыре из них имеют общую точку.
Докажите, что все пять окружностей проходят через одну точку.

Прислать комментарий     Решение

Задача 35426

Темы:   [ Симметричная стратегия ]
[ Выигрышные и проигрышные позиции ]
Сложность: 3-
Классы: 7,8,9

Шахматный король стоит в левом нижнем углу шахматной доски. Участвуют два игрока, которые ходят по очереди. За один ход его можно передвинуть на одно поле вправо, на одно поле вверх или на одно поле по диагонали "вправо-вверх". Выигрывает игрок, который поставит короля в правый верхний угол доски. Кто из игроков выигрывает при правильной игре?
Прислать комментарий     Решение


Задача 35430

Темы:   [ Теория игр (прочее) ]
[ Четность и нечетность ]
Сложность: 3-
Классы: 7,8

Дана клетчатая доска размером  а) 10×12;  б) 9×10;  в) 9×11. За ход разрешается вычеркнуть любую строку или любой столбец, если там есть хотя бы одна не вычеркнутая клетка. Проигрывает тот, кто не может сделать ход. Есть ли у кого-нибудь выигрышная стратегия?

Прислать комментарий     Решение

Страница: << 107 108 109 110 111 112 113 >> [Всего задач: 7526]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .