Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 10 задач
Версия для печати
Убрать все задачи

В треугольнике ABC высота AH равна медиане BM. Найдите угол MBC.

Вниз   Решение


а) Диагонали выпуклого четырехугольника ABCD пересекаются в точке P. Известны площади треугольников ABP, BCP, CDP. Найдите площадь треугольника ADP.
б) Выпуклый четырехугольник разбит диагоналями на четыре треугольника, площади которых выражаются целыми числами. Докажите, что произведение этих чисел представляет собой точный квадрат.

ВверхВниз   Решение


Даны параллелограмм ABCD и некоторая точка M. Докажите, что  SACM = | SABM±SADM|.

ВверхВниз   Решение


Докажите, что треугольник ABC является правильным тогда и только тогда, когда при повороте на 60o (либо по часовой стрелке, либо против) относительно точки A вершина B переходит в C.

ВверхВниз   Решение


Докажите, что при n ≠ 4 правильный n-угольник нельзя расположить так, чтобы его вершины оказались в узлах целочисленной решетки.

ВверхВниз   Решение


На клетчатой бумаге выбраны три точки A, B, C, находящиеся в вершинах клеток. Докажите, что если треугольник ABC остроугольный, то внутри или на сторонах его есть по крайней мере еще одна вершина клетки.

ВверхВниз   Решение


Докажите, что при повороте окружность переходит в окружность.

ВверхВниз   Решение


На сторонах BC и CD квадрата ABCD взяты точки M и K соответственно, причем $ \angle$BAM = $ \angle$MAK. Докажите, что BM + KD = AK.

ВверхВниз   Решение


На стороне AB четырехугольника ABCD взяты точки A1 и B1, а на стороне CD — точки C1 и D1, причем  AA1 = BB1 = pAB и  CC1 = DD1 = pCD, где p < 0, 5. Докажите, что  SA1B1C1D1/SABCD = 1 - 2p.

ВверхВниз   Решение


Через середину C произвольной хорды AB окружности проведены две хорды KL и MN (точки K и M лежат по одну сторону от AB). Отрезок KN пересекает AB в точке P. Отрезок LM пересекает AB в точке Q. Докажите, что  PC = QC.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 10]      



Задача 52460

 [Теорема о бабочке]
Темы:   [ Вспомогательные подобные треугольники ]
[ Вспомогательная окружность ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Центральная симметрия помогает решить задачу ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Радикальная ось ]
[ Применение проективных преобразований, сохраняющих окружность ]
Сложность: 5-
Классы: 8,9

Через середину C произвольной хорды AB окружности проведены две хорды KL и MN (точки K и M лежат по одну сторону от AB). Отрезок KN пересекает AB в точке P. Отрезок LM пересекает AB в точке Q. Докажите, что  PC = QC.

Прислать комментарий     Решение

Задача 58451

 [Теорема Паскаля]
Темы:   [ Теорема Паскаля ]
[ Применение проективных преобразований, сохраняющих окружность ]
[ Теоремы Чевы и Менелая ]
[ Две пары подобных треугольников ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 5-
Классы: 9,10,11

В окружность S вписан шестиугольник ABCDEF. Докажите, что точки пересечения прямых AB и DE, BC и EF, CD и FA лежат на одной прямой.

Прислать комментарий     Решение

Задача 58444

Тема:   [ Применение проективных преобразований, сохраняющих окружность ]
Сложность: 6+
Классы: 10,11

Докажите, что прямые, соединяющие противоположные точки касания описанного четырехугольника, проходят через точку пересечения диагоналей.
Прислать комментарий     Решение


Задача 58445

Тема:   [ Применение проективных преобразований, сохраняющих окружность ]
Сложность: 6+
Классы: 10,11

Докажите, что прямые, соединяющие вершины треугольника с точками касания противоположных сторон с вписанной окружностью, пересекаются в одной точке.
Прислать комментарий     Решение


Задача 58446

Тема:   [ Применение проективных преобразований, сохраняющих окружность ]
Сложность: 6+
Классы: 10,11

а) Через точку P проводятся всевозможные секущие окружности S. Найдите геометрическое место точек пересечения касательных к окружности S, проведенных в двух точках пересечения окружности с секущей.
б) Через точку P проводятся всевозможные пары секущих AB и CD окружности S (A, B, C, D — точки пересечения с окружностью). Найдите геометрическое место точек пересечения прямых AC и BD.
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 10]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .