Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 11 задач
Версия для печати
Убрать все задачи

Дан треугольник ABC, AD и BE — его биссектрисы. Известно, что AC > BC. Доказать, что AE > DE > BD.

Вниз   Решение


На боковых сторонах AB и AC равнобедренного треугольника ABC построены вне его равные треугольники AMB и ANC  (AM = AN).
Докажите, что точки M и N симметричны относительно биссектрисы угла BAC.

ВверхВниз   Решение


Радиус окружности равен 13, хорда равна 10. Найдите её расстояние от центра.

ВверхВниз   Решение


В круге с центром O проведена хорда AB. Вычислите площадь получившегося сегмента, если  ∠AOB = α,  а радиус круга равен r.

ВверхВниз   Решение


Равнобедренный треугольник ABC с основанием BC повернули вокруг точки C так, что его вершина A оказалась в точке A1 на прямой BC. При этом вершина B перешла в некоторую точку B1, лежащую с точкой A по одну сторону от прямой BC. Докажите, что прямые AB и B1C параллельны.

ВверхВниз   Решение


К окружности радиуса 36 проведена касательная из точки, удаленной от центра на расстояние, равное 85. Найдите длину касательной.

ВверхВниз   Решение


Расстояние от точки M до центра O окружности равно диаметру этой окружности. Через точку M проведены две прямые, касающиеся окружности в точках A и B. Найдите углы треугольника AOB.

ВверхВниз   Решение


На шахматной доске размером 8×8 отмечены 64 точки — центры всех клеток. Можно ли отделить все точки друг от друга, проведя 13 прямых, не проходящих через эти точки?

ВверхВниз   Решение


Постройте треугольник, если известны отрезки, на которые вписанная окружность делит его сторону, и радиус вписанной окружности.

ВверхВниз   Решение


Существует ли такой выпуклый 1976-гранник, который обладал бы следующим свойством: при произвольной расстановке стрелок на концах его рёбер сумма полученных векторов отлична от 0?

ВверхВниз   Решение


Из общей точки проведены к окружности две касательные. Радиус окружности равен 11, а сумма касательных равна 120.
Найдите расстояние от центра до общей точки касательных.

Вверх   Решение

Задачи

Страница: << 38 39 40 41 42 43 44 >> [Всего задач: 7526]      



Задача 52876

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ Диаметр, хорды и секущие ]
Сложность: 2+
Классы: 8,9

Радиус окружности равен 13, хорда равна 10. Найдите её расстояние от центра.

Прислать комментарий     Решение

Задача 52884

Темы:   [ Признаки и свойства касательной ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 2+
Классы: 8,9

К окружности радиуса 36 проведена касательная из точки, удаленной от центра на расстояние, равное 85. Найдите длину касательной.

Прислать комментарий     Решение

Задача 52885

Темы:   [ Две касательные, проведенные из одной точки ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 2+
Классы: 8,9

Из общей точки проведены к окружности две касательные. Радиус окружности равен 11, а сумма касательных равна 120.
Найдите расстояние от центра до общей точки касательных.

Прислать комментарий     Решение

Задача 53287

Темы:   [ Площадь круга, сектора и сегмента ]
[ Теорема Пифагора (прямая и обратная) ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 2+
Классы: 8,9

В круге радиуса r проведена хорда, равная a. Найдите площадь получившегося сегмента.

Прислать комментарий     Решение

Задача 53288

Темы:   [ Площадь круга, сектора и сегмента ]
[ Площадь треугольника (через две стороны и угол между ними) ]
Сложность: 2+
Классы: 8,9

В круге с центром O проведена хорда AB. Вычислите площадь получившегося сегмента, если  ∠AOB = α,  а радиус круга равен r.

Прислать комментарий     Решение

Страница: << 38 39 40 41 42 43 44 >> [Всего задач: 7526]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .