ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Даны два одинаковых пересекающихся круга. Отношение расстояния между их центрами к радиусу равно 2m . Третий круг касается внешним образом первых двух и их общей касательной. Найдите отношение площади общей части первых двух кругов к площади третьего круга.

   Решение

Задачи

Страница: << 125 126 127 128 129 130 131 >> [Всего задач: 6702]      



Задача 53262

Темы:   [ Вспомогательная окружность ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 3
Классы: 8,9

В равнобедренном треугольнике ABC (AB = BC) проведена высота CD . Угол BAC равен α . Радиус окружности, проходящей через точки A , C и D , равен R . Найдите площадь треугольника ABC .
Прислать комментарий     Решение


Задача 53294

Темы:   [ Площадь круга, сектора и сегмента ]
[ Касающиеся окружности ]
[ Общая касательная к двум окружностям ]
Сложность: 3
Классы: 8,9

Даны два одинаковых пересекающихся круга. Отношение расстояния между их центрами к радиусу равно 2m . Третий круг касается внешним образом первых двух и их общей касательной. Найдите отношение площади общей части первых двух кругов к площади третьего круга.
Прислать комментарий     Решение


Задача 53303

Темы:   [ Угол между касательной и хордой ]
[ Треугольник, образованный основаниями двух высот и вершиной ]
[ Вписанные и описанные окружности ]
Сложность: 3
Классы: 8,9

В треугольнике ABC проведены высоты BB1 и CC1.
Докажите, что касательная в точке A к описанной окружности параллельна прямой B1C1, а  B1C1OA  (O – центр описанной окружности).

Прислать комментарий     Решение

Задача 53321

Тема:   [ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3
Классы: 8,9

Даны два равнобедренных треугольника с общим основанием. Докажите, что их медианы, проведённые к основанию, лежат на одной прямой.

Прислать комментарий     Решение

Задача 53324

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Равные треугольники. Признаки равенства ]
Сложность: 3
Классы: 8,9

Докажите, что у равнобедренного треугольника высота, опущенная на основание, является медианой и биссектрисой.

Прислать комментарий     Решение

Страница: << 125 126 127 128 129 130 131 >> [Всего задач: 6702]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .