ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи На боковых сторонах AB и AC равнобедренного треугольника ABC отмечены точки P и Q так, что ∠PXB = ∠QXC, где X – середина основания BC. Две окружности касаются внешним образом. Прямая, проведённая через точку касания, образует в окружностях хорды, одна из которых равна 13/5 другой. Найдите радиусы окружностей, если расстояние между центрами равно 36. В равнобедренном треугольнике ABC сторона AC = b, стороны BA = BC = a, AM и CN – биссектрисы углов A и C. Найдите MN. Докажите, что значение любой периодической цепной дроби – квадратичная иррациональность. Шахматист сыграл в турнире 20 партий и набрал 12,5 очков. На сколько партий больше он выиграл, чем проиграл? Пусть O – центр правильного треугольника ABC. Из произвольной точки P плоскости опустили перпендикуляры на стороны треугольника или их продолжения. Обозначим через M точку пересечения медиан треугольника с вершинами в основаниях этих перпендикуляров. Докажите, что M – середина отрезка PO. Используя в качестве чисел любое количество монет достоинством 1, 2, 5 и 10 рублей, а также (бесплатные) скобки и знаки четырех арифметических действий, составьте выражение со значением 2009, потратив как можно меньше денег. Фабрика игрушек выпускает проволочные кубики, в вершинах которых расположены маленькие разноцветные шарики. По ГОСТу в каждом кубике должны быть использованы шарики всех восьми цветов (белого и семи цветов радуги). Сколько разных моделей кубиков может выпускать фабрика? AD – биссектриса треугольника ABC. Точка M лежит на стороне AB, причём AM = MD. Докажите, что MD || AC. Пусть AA1 и CC1 – высоты остроугольного треугольника ABC . Прямая, проходящая через центры вписанных окружностей треугольников AA1C и CC1A пересекает стороны AB и BC треугольника ABC в точках X и Y . Докажите, что BX=BY . В треугольнике ABC сторона AB = 15 и AC = 10, AD – биссектриса угла A. Из точки D проведена прямая, параллельная AB, до пересечения с AC в точке E. Найдите AE, EC и DE. Найдите острые углы прямоугольного треугольника, если медиана, проведённая к его гипотенузе, делит прямой угол в отношении 1 : 2. Докажите равенство треугольников по углу, биссектрисе и стороне, исходящим из вершины этого угла. |
Страница: << 126 127 128 129 130 131 132 >> [Всего задач: 6702]
Точки A, B, C, D лежат на одной прямой. Докажите, что если треугольники ABE1 и ABE2 равны, то треугольники CDE1 и CDE2 тоже равны.
Треугольники ABC и BAD равны, причём точки C и D лежат по разные стороны от прямой AB. Докажите, что:
Докажите равенство треугольников по углу, биссектрисе и стороне, исходящим из вершины этого угла.
На боковых сторонах AB и AC равнобедренного треугольника ABC отмечены точки P и Q так, что ∠PXB = ∠QXC, где X – середина основания BC.
На сторонах параллелограмма вне его построены квадраты. Докажите, что их центры также образуют квадрат.
Страница: << 126 127 128 129 130 131 132 >> [Всего задач: 6702]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке