Страница:
<< 169 170 171 172
173 174 175 >> [Всего задач: 6702]
Через середину M стороны BC параллелограмма ABCD, площадь
которого равна 1, и вершину A проведена прямая, пересекающая диагональ BD в точке O. Найдите площадь четырёхугольника OMCD.
В треугольнике ABC проведены биссектрисы CF и AD. Найдите
отношение SAFD : SABC, если AB : AC : BC = 21 : 28 : 20.
Основание треугольника равно 36. Прямая, параллельная основанию, делит площадь треугольника пополам.
Найдите длину отрезка этой прямой, заключённого между сторонами треугольника.
Прямая, параллельная основанию треугольника, делит его на части, площади которых относятся как 2 : 1, считая от вершины. В каком отношении она делит боковые стороны?
Через точки R и E, принадлежащие сторонам AB и AD
параллелограмма ABCD и такие, что AR = ⅔ AB,
AE = ⅓ AD, проведена прямая.
Найдите отношение площади параллелограмма к площади полученного треугольника.
Страница:
<< 169 170 171 172
173 174 175 >> [Всего задач: 6702]