Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

Дана последовательность  an = 1 + 2n + ... + 5n.  Существуют ли пять идущих подряд её членов, кратных 2005?

Вниз   Решение


Может ли число n! оканчиваться цифрами 19760...0?

ВверхВниз   Решение


Докажите следующий признак делимости на 37. Для того, чтобы узнать, делится ли число на 37, надо разбить его справа налево на группы по три цифры. Если сумма полученных трёхзначных чисел делится на 37, то и данное число делится на 37. (Слово "трёхзначные" употреблено условно: некоторые из групп могут начинаться с нулей и быть на самом деле двузначными или меньше; не трёхзначной будет и самая левая группа, если количество цифр нашего числа не кратно 3.)

ВверхВниз   Решение


  Рассматриваются решения уравнения  1/x + 1/y = 1/p  (p > 1),  где x, y и p – натуральные числа. Докажите, что если p – простое число, то уравнение имеет ровно три решения; если p – составное, то решений больше трёх  ((a, b)  и  (b, a) – различные решения, если  a ≠ b).

ВверхВниз   Решение


Каковы первые четыре цифры числа  11 + 2² + 3³ + ... + 999999 + 10001000?

ВверхВниз   Решение


a1, a2, ..., an  – такие числа, что  a1 + a2 + ... + an = 0.  Доказать, что в этом случае справедливо соотношение   S = a1a2 + a1a3 + ... + an–1an ≤ 0
(в сумму S входят все возможные произведения aiaj,  i ≠ j).

ВверхВниз   Решение


30 команд участвуют в розыгрыше первенства по футболу.
Доказать, что в любой момент состязаний имеются две команды, сыгравшие к этому моменту одинаковое число матчей.

ВверхВниз   Решение


На плоскости даны 7 прямых, никакие две из которых не параллельны. Доказать, что найдутся две из них, угол между которыми меньше 26°.

ВверхВниз   Решение


На каждой стороне параллелограмма взято по точке. Площадь четырёхугольника с вершинами в этих точках равна половине площади параллелограмма. Докажите, что хотя бы одна из диагоналей четырёхугольника параллельна одной из сторон параллелограмма.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 >> [Всего задач: 25]      



Задача 79237

Темы:   [ Десятичная система счисления ]
[ Четность и нечетность ]
Сложность: 3
Классы: 9

Может ли число, состоящее из шестисот шестёрок и некоторого количества нулей, быть квадратом целого числа?

Прислать комментарий     Решение

Задача 79239

Темы:   [ Уравнения в целых числах ]
[ Разложение на множители ]
Сложность: 3
Классы: 9

  Рассматриваются решения уравнения  1/x + 1/y = 1/p  (p > 1),  где x, y и p – натуральные числа. Докажите, что если p – простое число, то уравнение имеет ровно три решения; если p – составное, то решений больше трёх  ((a, b)  и  (b, a) – различные решения, если  a ≠ b).

Прислать комментарий     Решение

Задача 79251

Темы:   [ Покрытия ]
[ Ортоцентр и ортотреугольник ]
Сложность: 3
Классы: 8

Дан остроугольный треугольник ABC. Его покрывают тремя кругами, центры которых лежат в вершинах, а радиусы равны высотам, проведённым из этих вершин. Доказать, что каждая точка треугольника покрыта хотя бы одним из кругов.
Прислать комментарий     Решение


Задача 55131

Темы:   [ Параллелограммы (прочее) ]
[ Отношение площадей треугольников с общим углом ]
[ Площадь треугольника (через высоту и основание) ]
Сложность: 3+
Классы: 8,9

На каждой стороне параллелограмма взято по точке. Площадь четырёхугольника с вершинами в этих точках равна половине площади параллелограмма. Докажите, что хотя бы одна из диагоналей четырёхугольника параллельна одной из сторон параллелограмма.

Прислать комментарий     Решение

Задача 79243

Темы:   [ Деление многочленов с остатком. НОД и НОК многочленов ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 10

Дан многочлен с целыми коэффициентами. В трёх целых точках он принимает значение 2.
Доказать, что ни в какой целой точке он не принимает значение 3.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 >> [Всего задач: 25]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .