ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

а) Докажите, что площадь четырехугольника, образованного серединами сторон выпуклого четырехугольника ABCD, равна половине площади ABCD.
б) Докажите, что если диагонали выпуклого четырехугольника равны, то его площадь равна произведению длин отрезков, соединяющих середины противоположных сторон.

   Решение

Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 85]      



Задача 54972  (#01.035)

Темы:   [ Отношения линейных элементов подобных треугольников ]
[ Признаки и свойства параллелограмма ]
Сложность: 3+
Классы: 8,9

Через некоторую точку, взятую внутри треугольника, проведены три прямые, параллельные сторонам. Эти прямые разбивают треугольник на шесть частей, три из которых – треугольники с площадями S1, S2, S3. Найдите площадь S данного треугольника.

Прислать комментарий     Решение

Задача 56492  (#01.036)

Темы:   [ Медиана делит площадь пополам ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Отношение площадей подобных треугольников ]
Сложность: 3
Классы: 8,9

Докажите, что площадь треугольника, стороны которого равны медианам треугольника площади S, равна 3S/4.
Прислать комментарий     Решение


Задача 56493  (#01.037)

Темы:   [ Параллелограмм Вариньона ]
[ Отношение площадей подобных треугольников ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 3
Классы: 8,9

а) Докажите, что площадь четырехугольника, образованного серединами сторон выпуклого четырехугольника ABCD, равна половине площади ABCD.
б) Докажите, что если диагонали выпуклого четырехугольника равны, то его площадь равна произведению длин отрезков, соединяющих середины противоположных сторон.
Прислать комментарий     Решение


Задача 56494  (#01.038)

Темы:   [ Отношение площадей подобных треугольников ]
[ Свойства симметрии и центра симметрии ]
[ Параллелограмм Вариньона ]
Сложность: 3
Классы: 8,9

Точка O, лежащая внутри выпуклого четырёхугольника площади S, отражается симметрично относительно середин его сторон.
Найдите площадь четырёхугольника с вершинами в полученных точках.

Прислать комментарий     Решение

Задача 53358  (#01.039)

Темы:   [ Вспомогательные равные треугольники ]
[ Признаки равенства прямоугольных треугольников ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Вспомогательные подобные треугольники ]
Сложность: 4-
Классы: 8,9

Сторона AD прямоугольника ABCD в три раза больше стороны AB. Точки M и N делят AD на три равные части. Найдите  ∠AMB + ∠ANB + ∠ADB.

Прислать комментарий     Решение

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 85]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .