ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Все источники
>>
Книги, журналы
>>
Прасолов В.В., Задачи по планиметрии
>>
глава 1. Подобные треугольники
Параграфы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Из произвольной точки M окружности, описанной около прямоугольника ABCD, опустили перпендикуляры MQ и MP на его две противоположные стороны и перпендикуляры MR и MT на продолжения двух других сторон. Докажите, что прямые PR и QT перпендикулярны, а точка их пересечения принадлежит диагонали прямоугольника ABCD. Решение |
Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 85]
Основание равнобедренного треугольника составляет четверть его периметра. Из произвольной точки основания проведены прямые, параллельные боковым сторонам. Во сколько раз периметр треугольника больше периметра отсечённого параллелограмма?
Диагонали трапеции взаимно перпендикулярны. Докажите, что произведение длин оснований трапеции равно сумме произведений длин отрезков одной диагонали и длин отрезков другой диагонали, на которые они делятся точкой пересечения.
Сторона квадрата равна 1. Через его центр проведена прямая. Вычислите сумму квадратов расстояний от четырёх вершин квадрата до этой прямой.
Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 85] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|