ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Главы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В треугольнике ABC проведена высота AH, а из
вершин B и C опущены перпендикуляры BB1 и CC1 на
прямую, проходящую через точку A. Докажите,
что
|
Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 1956]
В треугольнике ABC проведена высота AH, а из
вершин B и C опущены перпендикуляры BB1 и CC1 на
прямую, проходящую через точку A. Докажите,
что
На дуге BC окружности, описанной около равностороннего
треугольника ABC, взята произвольная точка P.
Отрезки AP и BC пересекаются в точке Q. Докажите,
что
1/PQ = 1/PB + 1/PC.
На сторонах BC и CD квадрата ABCD взяты точки E
и F так, что
Прямая, проходящая через вершину C равнобедренного
треугольника ABC, пересекает основание AB в точке M,
а описанную окружность в точке N. Докажите, что
CM . CN = AC2
и
CM/CN = AM . BM/(AN . BN).
Дан параллелограмм ABCD с острым углом при
вершине A. На лучах AB и CB отмечены точки H и K
соответственно так, что CH = BC и AK = AB. Докажите, что:
Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 1956]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке