ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Четырехугольник ABCD вписанный. Докажите, что

$\displaystyle {\frac{AC}{BD}}$ = $\displaystyle {\frac{AB\cdot AD+CB\cdot CD}{BA\cdot BC+DA\cdot DC}}$.


   Решение

Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 110]      



Задача 52468  (#06.034)

 [Теорема Птолемея]
Темы:   [ Теорема Птолемея ]
[ Две пары подобных треугольников ]
[ Вспомогательные равные треугольники ]
[ Площадь четырехугольника ]
[ Площадь треугольника (через две стороны и угол между ними) ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 4-
Классы: 8,9

Докажите, что если четырёхугольник вписан в окружность, то сумма произведений длин двух пар его противоположных сторон равна произведению длин его диагоналей.

Прислать комментарий     Решение

Задача 57046  (#06.035)

Тема:   [ Теорема Птолемея ]
Сложность: 5
Классы: 9

Четырехугольник ABCD вписанный. Докажите, что

$\displaystyle {\frac{AC}{BD}}$ = $\displaystyle {\frac{AB\cdot AD+CB\cdot CD}{BA\cdot BC+DA\cdot DC}}$.


Прислать комментарий     Решение

Задача 57047  (#06.036)

Темы:   [ Геометрические интерпретации в алгебре ]
[ Теорема Птолемея ]
[ Тождественные преобразования (тригонометрия) ]
[ Теорема синусов ]
Сложность: 5+
Классы: 9,10,11

Пусть  $ \alpha$ = $ \pi$/7. Докажите, что  $ {\frac{1}{\sin\alpha }}$ = $ {\frac{1}{\sin 2\alpha }}$ + $ {\frac{1}{\sin
3\alpha }}$.
Прислать комментарий     Решение


Задача 57048  (#06.037)

Темы:   [ Теорема Птолемея ]
[ Вписанные и описанные окружности ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
Сложность: 5
Классы: 8,9,10

Расстояния от центра описанной окружности остроугольного треугольника до его сторон равны da, db и dc. Докажите, что  da + db + dc = R + r.
Прислать комментарий     Решение


Задача 57049  (#06.040B)

Тема:   [ Теорема Птолемея ]
Сложность: 5
Классы: 9

Вписанная окружность касается сторон BC, CA и AB в точках A1, B1 и C1. Пусть Q — середина отрезка A1B1. Докажите, что $ \angle$B1C1C = $ \angle$QC1A1.
Прислать комментарий     Решение


Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 110]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .