Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

У правильного 1981-угольника отмечены 64 вершины. Доказать, что существует трапеция с вершинами в отмеченных точках.

Вниз   Решение


Докажите неравенство для натуральных n:  

ВверхВниз   Решение


На высотах BB1 и CC1 треугольника ABC взяты точки B2 и C2 так, что   ∠AB2C = ∠AC2B = 90°.  Докажите, что  AB2 = AC2.

ВверхВниз   Решение


Число A делится на 1, 2, 3, ..., 9. Доказать, что если 2A представлено в виде суммы натуральных чисел, меньших 10,  2A = a1 + a2 + ... + ak,  то из чисел a1, a2, ..., ak можно выбрать часть, сумма которых равна A.

ВверхВниз   Решение


На сторонах AB, BC и CD четырехугольника ABCD (или на их продолжениях) взяты точки K, L и M. Прямые KL и AC пересекаются в точке PLM и BD — в точке Q. Докажите, что точка пересечения прямых KQ и MP лежит на прямой AD.

ВверхВниз   Решение


12 шахматистов сыграли турнир в один круг. Потом каждый из них написал 12 списков. В первом только он, в (k+1)-м – те, кто были в k-м и те, у кого они выиграли. Оказалось, что у каждого шахматиста 12-й список отличается от 11-го. Сколько было ничьих?

ВверхВниз   Решение


Каждую неделю Ваня получает ровно одну оценку ("3", "4" или "5") по каждому из семи предметов. Он считает неделю удачной, если количество предметов, по которым оценка улучшилась, превышает хотя бы на два количество предметов, по которым оценка ухудшилась. Оказалось, что n недель подряд были удачными, и в последнюю из них оценка по каждому предмету в точности совпала с оценкой первой недели. Чему могло равняться число n?

ВверхВниз   Решение


На биссектрисе данного угла фиксирована точка. Рассматриваются всевозможные равнобедренные треугольники, у которых вершина находится в этой точке, а концы оснований лежат на разных сторонах этого угла. Найти геометрическое место середин оснований таких треугольников.

ВверхВниз   Решение


Все углы выпуклого многоугольника A1...An равны, и из некоторой его внутренней точки O все стороны видны под равными углами.
Докажите, что этот многоугольник правильный.

Вверх   Решение

Задачи

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 110]      



Задача 57065  (#06.055B)

Темы:   [ Шестиугольники ]
[ Вписанные и описанные многоугольники ]
[ Композиции симметрий ]
Сложность: 7
Классы: 9,10,11

а) Противоположные стороны выпуклого шестиугольника ABCDEF попарно параллельны. Докажите, что этот шестиугольник вписанный тогда и только тогда, когда его диагонали AD, BE и CF равны.
б) Докажите аналогичное утверждение для невыпуклого (возможно, самопересекающегося) шестиугольника.
Прислать комментарий     Решение


Задача 57066  (#06.053)

Темы:   [ Правильные многоугольники ]
[ Четность и нечетность ]
[ Поворот помогает решить задачу ]
Сложность: 3
Классы: 9

Число сторон многоугольника A1...An нечётно. Докажите, что:
  а) если этот многоугольник вписанный и все его углы равны, то он правильный;
  б) если этот многоугольник описанный и все его стороны равны, то он правильный.

Прислать комментарий     Решение

Задача 57067  (#06.054)

Темы:   [ Правильные многоугольники ]
[ Признаки подобия ]
[ Сумма внутренних и внешних углов многоугольника ]
Сложность: 3+
Классы: 9

Все углы выпуклого многоугольника A1...An равны, и из некоторой его внутренней точки O все стороны видны под равными углами.
Докажите, что этот многоугольник правильный.

Прислать комментарий     Решение

Задача 57068  (#06.055)

Темы:   [ Правильные многоугольники ]
[ Площадь треугольника (через высоту и основание) ]
[ Равнобедренные, вписанные и описанные трапеции ]
Сложность: 3+
Классы: 9

Бумажная лента постоянной ширины завязана простым узлом и затем стянута так, чтобы узел стал плоским (см. рис.).
Докажите, что узел имеет форму правильного пятиугольника.

Прислать комментарий     Решение

Задача 57069  (#06.056)

Темы:   [ Правильные многоугольники ]
[ Средняя линия треугольника ]
Сложность: 4-
Классы: 9

На сторонах AB, BC, CD и DA квадрата ABCD построены внутренним образом правильные треугольники ABK, BCL, CDM и DAN. Докажите, что середины сторон этих треугольников (не являющихся сторонами квадрата) и середины отрезков KL, LM, MN и NK образуют правильный двенадцатиугольник.

Прислать комментарий     Решение

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 110]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .