Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 11 задач
Версия для печати
Убрать все задачи

В каком месте следует построить мост MN через реку, разделяющую две данные деревни A и B, чтобы путь AMNB из деревни A в деревню B был кратчайшим (берега реки считаются параллельными прямыми, мост предполагается перпендикулярным к реке).

Вниз   Решение


Постройте прямую, проходящую через данную точку и касающуюся данной окружности.

ВверхВниз   Решение


Собралось n человек. Некоторые из них знакомы между собой, причём каждые два незнакомых имеют ровно двух общих знакомых, а каждые два знакомых не имеют общих знакомых. Доказать, что каждый из присутствующих знаком с одинаковым числом человек.

ВверхВниз   Решение


Точка M лежит на диаметре AB окружности. Хорда CD окружности проходит через точку M и пересекает прямую AB под углом в 45°.
Докажите, что величина  CM² + DM²  не зависит от выбора точки M.

ВверхВниз   Решение


Докажите, что не существует на плоскости четырех точек A, B, C и D таких, что все треугольники ABC, BCD, CDA, DAB остроугольные.

ВверхВниз   Решение


На клетчатом листе закрасили 25 клеток. Может ли каждая из них иметь нечётное число закрашенных соседей?

ВверхВниз   Решение


Две окружности радиуса R пересекаются в точках M и N. Пусть A и B — точки пересечения серединного перпендикуляра к отрезку MN с этими окружностями, лежащие по одну сторону от прямой MN. Докажите, что MN2 + AB2 = 4R2.

ВверхВниз   Решение


Даны отрезки, длины которых равны a, b и c. Постройте отрезок длиной: a) ab/c; б) $ \sqrt{ab}$.

ВверхВниз   Решение


В нижнем левом углу шахматной доски 8 на 8 стоит фишка. Двое по очереди передвигают её на одну клетку вверх, вправо или вправо-вверх по диагонали.  Выигрывает тот, кто поставит фишку в правый верхний угол. Кто победит при правильной игре?

ВверхВниз   Решение


а) Архитектор хочет расположить четыре высотных здания так, что, гуляя по городу, можно увидеть их шпили в произвольном порядке (т. е. для любого набора номеров зданий i, j, k, l можно стоя в некоторой точке и поворачиваясь в направлении к пок или к противк часовой стрелки, увидеть сначала шпиль здания i, затем j, k, l). Удастся ли ему это сделать?
б) Тот же вопрос для пяти зданий.

ВверхВниз   Решение


Через вершину A выпуклого четырехугольника ABCD проведите прямую, делящую его на две равновеликие части.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 10]      



Задача 57239

Тема:   [ Четырехугольники (построения) ]
Сложность: 3
Классы: 8,9

Постройте квадрат, три вершины которого лежат на трёх данных параллельных прямых.
Прислать комментарий     Решение


Задача 57240

Тема:   [ Четырехугольники (построения) ]
Сложность: 3
Классы: 8,9

Постройте ромб, две стороны которого лежат на двух данных параллельных прямых, а две другие проходят через две данные точки.
Прислать комментарий     Решение


Задача 57241

Тема:   [ Четырехугольники (построения) ]
Сложность: 3
Классы: 8,9

Постройте четырехугольник ABCD по четырем сторонам и углу между AB и CD.
Прислать комментарий     Решение


Задача 57242

Тема:   [ Четырехугольники (построения) ]
Сложность: 4
Классы: 8,9

Через вершину A выпуклого четырехугольника ABCD проведите прямую, делящую его на две равновеликие части.
Прислать комментарий     Решение


Задача 57243

Тема:   [ Четырехугольники (построения) ]
Сложность: 4
Классы: 8,9

Даны середины трех равных сторон выпуклого четырехугольника. Постройте этот четырехугольник.
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 10]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .