Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 14 задач
Версия для печати
Убрать все задачи

В треугольнике основание равно 12; один из углов при нём равен 120o; сторона против этого угла равна 28. Найдите третью сторону.

Вниз   Решение


Многочлен степени  $n > 1$  имеет $n$ разных корней $х_1$, $х_2$, ..., $х_n$. Его производная имеет корни $y_1$, $y_2$, ..., $y_{n-1}$. Докажите неравенство $$\frac{x_1^2 + \dots + x_n^2}{n} > \frac{y_1^2 + \dots + y_{n-1}^2}{n-1}.$$

ВверхВниз   Решение


В треугольнике ABC точка P — центр вписанной окружности, а точка Q — центр окружности, описанной около треугольника ABC. Прямая PQ перпендикулярна биссектрисе AP треугольника ABC. Известно, что величина угла PAQ равна $ \alpha$. Найдите углы треугольника.

ВверхВниз   Решение


Точки M и N – середины соседних сторон соответственно BC и CD параллелограмма ABCD. Докажите, что прямые AM и AN делят диагональ BD на три равные части.

ВверхВниз   Решение


Путешественник, сняв в гостинице комнату на неделю, предложил хозяину в уплату цепочку из семи серебряных колец  — по кольцу за день, с тем, однако, условием, что будет рассчитываться ежедневно. Хозяин согласился, оговорив со своей стороны, что можно распилить только одно кольцо. Как путешественнику удалось расплатиться с хозяином гостиницы?

ВверхВниз   Решение


Сумма четырех единичных векторов равна нулю. Докажите, что их можно разбить на две пары противоположных векторов.

ВверхВниз   Решение


Автор: Нилов Ф.

В четырёхугольнике ABCD углы A и C – прямые. На сторонах AB и CD как на диаметрах построены окружности, пересекающиеся в точках X и Y. Докажите, что прямая XY проходит через середину K диагонали AC

ВверхВниз   Решение


Боковая сторона AD и основание CD трапеции ABCD равны k, а основание  AB = 2k.  Диагональ AC равна l. Найдите боковую сторону BC.

ВверхВниз   Решение


Автор: Tran Quang Hung

Пусть M – середина хорды AB окружности с центром O. Точка K симметрична M относительно O, P – произвольная точка окружности. Перпендикуляр к AB в точке A и перпендикуляр к PK в точке P пересекаются в точке Q. Точка H – проекция P на AB. Докажите, что прямая QB делит отрезок PH пополам.

ВверхВниз   Решение


Автор: Храбров А.

Все коэффициенты некоторого непостоянного многочлена целые и по модулю не превосходят 2015.
Докажите, что любой положительный корень этого многочлена больше чем 1/2016.

ВверхВниз   Решение


Автор: Дидин М.

Дан вписанный четырёхугольник АВСD. Продолжения его противоположных сторон пересекаются в точках P и Q. Пусть К и N – середины диагоналей.
Докажите, что сумма углов PKQ и PNQ равна 180°.

ВверхВниз   Решение


Автор: Скутин А.

Правильный шестиугольник ABCDEF вписан в окружность. Точки P и Q выбраны на касательных, проведённых к этой окружности в точках A и D соответственно, так, что прямая PQ касается меньшей дуги EF этой окружности. Найдите угол между прямыми PB и QC.

ВверхВниз   Решение


Пусть BHb, CHc – высоты треугольника ABC. Прямая HbHc пересекает описанную окружность Ω треугольника ABC в точках X и Y. Точки P и Q симметричны X и Y относительно AB и AC соответственно. Докажите, что  PQ || BC.

ВверхВниз   Решение


а) Докажите, что из медиан треугольника можно составить треугольник.
б) Из медиан треугольника ABC составлен треугольник A1B1C1, а из медиан треугольника A1B1C1 составлен треугольник A2B2C2. Докажите, что треугольники ABC и A2B2C2 подобны, причем коэффициент подобия равен 3/4.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 59]      



Задача 57681  (#13.001)

Темы:   [ Векторы сторон многоугольников ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Векторы помогают решить задачу ]
Сложность: 3
Классы: 8,9,10

а) Докажите, что из медиан треугольника можно составить треугольник.
б) Из медиан треугольника ABC составлен треугольник A1B1C1, а из медиан треугольника A1B1C1 составлен треугольник A2B2C2. Докажите, что треугольники ABC и A2B2C2 подобны, причем коэффициент подобия равен 3/4.
Прислать комментарий     Решение


Задача 57682  (#13.002)

Темы:   [ Векторы сторон многоугольников ]
[ Векторы помогают решить задачу ]
[ Свойства медиан. Центр тяжести треугольника. ]
Сложность: 3-
Классы: 8,9,10

Стороны треугольника T параллельны медианам треугольника T1. Докажите, что медианы треугольника T параллельны сторонам треугольника T1.
Прислать комментарий     Решение


Задача 57683  (#13.003)

Тема:   [ Векторы сторон многоугольников ]
Сложность: 2+
Классы: 9

M1, M2,..., M6 — середины сторон выпуклого шестиугольника A1A2...A6. Докажите, что существует треугольник, стороны которого равны и параллельны отрезкам M1M2, M3M4, M5M6.
Прислать комментарий     Решение


Задача 57684  (#13.004)

Тема:   [ Векторы сторон многоугольников ]
Сложность: 3
Классы: 9

Из точки, лежащей внутри выпуклого n-угольника, проведены лучи, перпендикулярные его сторонам и пересекающие стороны (или их продолжения). На этих лучах отложены векторы a1,...,an, длины которых равны длинам соответствующих сторон. Докажите, что a1 +...+ an = 0.
Прислать комментарий     Решение


Задача 57685  (#13.005)

Темы:   [ Векторы сторон многоугольников ]
[ Ромбы. Признаки и свойства ]
Сложность: 3+
Классы: 8,9,10

Сумма четырех единичных векторов равна нулю. Докажите, что их можно разбить на две пары противоположных векторов.
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 59]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .