ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Параграфы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи
В треугольнике основание равно 12; один из углов при нём равен 120o; сторона против этого угла равна 28. Найдите третью сторону.
Многочлен степени n>1 имеет n разных корней х1, х2, ..., хn. Его производная имеет корни y1, y2, ..., yn−1. Докажите неравенство x21+⋯+x2nn>y21+⋯+y2n−1n−1.
В треугольнике ABC точка P — центр вписанной окружности, а
точка Q — центр окружности, описанной около треугольника ABC.
Прямая PQ перпендикулярна биссектрисе AP треугольника ABC.
Известно, что величина угла PAQ равна
Точки M и N – середины соседних сторон соответственно BC и CD параллелограмма ABCD. Докажите, что прямые AM и AN делят диагональ BD на три равные части. Путешественник, сняв в гостинице комнату на неделю, предложил хозяину в уплату цепочку из семи серебряных колец — по кольцу за день, с тем, однако, условием, что будет рассчитываться ежедневно. Хозяин согласился, оговорив со своей стороны, что можно распилить только одно кольцо. Как путешественнику удалось расплатиться с хозяином гостиницы? Сумма четырех единичных векторов равна нулю. Докажите, что их
можно разбить на две пары противоположных векторов.
В четырёхугольнике ABCD углы A и C – прямые. На сторонах AB и CD как на диаметрах построены окружности, пересекающиеся в точках X и Y. Докажите, что прямая XY проходит через середину K диагонали AC Боковая сторона AD и основание CD трапеции ABCD равны k, а основание AB = 2k. Диагональ AC равна l. Найдите боковую сторону BC. Пусть M – середина хорды AB окружности с центром O. Точка K симметрична M относительно O, P – произвольная точка окружности. Перпендикуляр к AB в точке A и перпендикуляр к PK в точке P пересекаются в точке Q. Точка H – проекция P на AB. Докажите, что прямая QB делит отрезок PH пополам. Все коэффициенты некоторого непостоянного многочлена целые и по модулю не превосходят 2015. Дан вписанный четырёхугольник АВСD. Продолжения его противоположных сторон пересекаются в точках P и Q. Пусть К и N – середины диагоналей. Правильный шестиугольник ABCDEF вписан в окружность. Точки P и Q выбраны на касательных, проведённых к этой окружности в точках A и D соответственно, так, что прямая PQ касается меньшей дуги EF этой окружности. Найдите угол между прямыми PB и QC. Пусть BHb, CHc – высоты треугольника ABC. Прямая HbHc пересекает описанную окружность Ω треугольника ABC в точках X и Y. Точки P и Q симметричны X и Y относительно AB и AC соответственно. Докажите, что PQ || BC. а) Докажите, что из медиан треугольника можно составить треугольник.
Стороны треугольника T параллельны медианам треугольника T1.
Докажите, что медианы треугольника T параллельны сторонам
треугольника T1.
|
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 59]
а) Докажите, что из медиан треугольника можно составить треугольник.
Стороны треугольника T параллельны медианам треугольника T1.
Докажите, что медианы треугольника T параллельны сторонам
треугольника T1.
M1, M2,..., M6 — середины сторон выпуклого
шестиугольника
A1A2...A6. Докажите, что существует
треугольник, стороны которого равны и параллельны отрезкам M1M2,
M3M4, M5M6.
Из точки, лежащей внутри выпуклого n-угольника, проведены лучи,
перпендикулярные его сторонам и пересекающие стороны (или их
продолжения). На этих лучах отложены векторы
a1,...,an, длины которых равны длинам соответствующих сторон.
Докажите, что
a1 +...+ an = 0.
Сумма четырех единичных векторов равна нулю. Докажите, что их
можно разбить на две пары противоположных векторов.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 59]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке