ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите, что из пяти векторов всегда можно выбрать два так, чтобы длина их суммы не превосходила длины суммы оставшихся трех векторов.

   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 59]      



Задача 57701  (#13.019)

Тема:   [ Неравенства с векторами ]
Сложность: 3
Классы: 9

Даны точки A, B, C и D. Докажите, что AB2 + BC2 + CD2 + DA2$ \ge$AC2 + BD2, причем равенство достигается, только если ABCD — параллелограмм.
Прислать комментарий     Решение


Задача 57702  (#13.020)

Тема:   [ Неравенства с векторами ]
Сложность: 3+
Классы: 9

Докажите, что из пяти векторов всегда можно выбрать два так, чтобы длина их суммы не превосходила длины суммы оставшихся трех векторов.
Прислать комментарий     Решение


Задача 57703  (#13.021)

Тема:   [ Неравенства с векторами ]
Сложность: 4
Классы: 9

Десять векторов таковы, что длина суммы любых девяти их них меньше длины суммы всех десяти векторов. Докажите, что существует ось, проекция на которую каждого из десяти векторов положительна.
Прислать комментарий     Решение


Задача 57704  (#13.022)

Тема:   [ Неравенства с векторами ]
Сложность: 4
Классы: 9

Точки A1,..., An лежат на окружности с центром O, причем $ \overrightarrow{OA_1}$ +...+ $ \overrightarrow{OA_n}$ = $ \overrightarrow{0}$. Докажите, что для любой точки X справедливо неравенство XA1 +...+ XAn$ \ge$nR, где R — радиус окружности.
Прислать комментарий     Решение


Задача 57705  (#13.023)

Тема:   [ Неравенства с векторами ]
Сложность: 4
Классы: 9

Дано восемь вещественных чисел a, b, c, d, e, f, g, h. Докажите, что хотя бы одно из шести чисел ac + bd, ae + bf, ag + bh, ce + df, cg + dh, eg + fh неотрицательно.
Прислать комментарий     Решение


Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 59]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .