ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Постройте треугольник ABC по: а) c, a - b (a > b) и углу C; б) c, a + b и углу C.

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 46]      



Задача 57873  (#17.007)

Тема:   [ Симметрия и построения ]
Сложность: 3
Классы: 9

Постройте треугольник ABC по стороне c, высоте hc и разности углов A и B.
Прислать комментарий     Решение


Задача 57874  (#17.008)

Тема:   [ Симметрия и построения ]
Сложность: 3
Классы: 9

Постройте треугольник ABC по: а) c, a - b (a > b) и углу C; б) c, a + b и углу C.
Прислать комментарий     Решение


Задача 57875  (#17.009)

Тема:   [ Симметрия и построения ]
Сложность: 3
Классы: 9

Дана прямая l и точки A и B, лежащие по одну сторону от нее. Постройте такую точку X прямой l, что AX + XB = a, где a — данная величина.
Прислать комментарий     Решение


Задача 57876  (#17.010)

Тема:   [ Симметрия и построения ]
Сложность: 4
Классы: 9

Дан острый угол MON и точки A и B внутри его. Найдите на стороне OM точку X так, чтобы треугольник XYZ, где Y и Z — точки пересечения прямых XA и XB с ON, был равнобедренным: XY = XZ.
Прислать комментарий     Решение


Задача 57877  (#17.011)

Темы:   [ Симметрия и построения ]
[ Две касательные, проведенные из одной точки ]
[ Биссектриса угла ]
Сложность: 4
Классы: 8,9,10

Дана прямая MN и две точки A и B по одну сторону от нее. Постройте на прямой MN точку X так, что  ∠AXM = 2∠BXN.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 46]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .