ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Параграфы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи α, β и γ - углы треугольника ABC. Докажите, что
α, β и γ - углы треугольника ABC. Докажите, что
а)
ctg(
tg
а)
sin
Докажите тождество:
1 . 2 . 3 + 2 . 3 . 4 +...+ n(n + 1)(n + 2) = Докажите, что любое движение второго рода является скользящей симметрией.
Докажите, что любое движение первого рода
является поворотом или параллельным переносом.
Дан треугольник ABC. Докажите, что композиция симметрий
S = SACoSABoSBC является скользящей симметрией, для которой
вектор переноса имеет длину
2R sin Даны окружность S, точка P, расположенная вне S,
и прямая l, проходящая через P и пересекающая окружность
в точках A и B. Точку пересечения касательных к окружности
в точках A и B обозначим через K.
Докажите, что α, β и γ - углы треугольника ABC. Докажите, что
Доказать, что a2n+1 + (a – 1)n+2 делится на a² – a + 1 (a – целое, n – натуральное). Пусть α, β и γ - углы треугольника ABC. Докажите, что
a1 = a2 = 1, an+1 = anan–1 + 1. Доказать, что an не делится на 4. Факториальная система счисления. Докажите, что каждое натуральное число n может быть единственным образом представлено в виде
n = a1 . 1! + a2 . 2! + a3 . 3! +...,
где
0 Даны окружность S, прямая l, точка M, лежащая
на S и не лежащая на l, и точка O, не лежащая на S.
Рассмотрим преобразование P прямой l, являющееся композицией
проектирования l на S из M, S на себя из O и S на l
из M, т. е. P(A) — пересечение прямых l и MC,
где C — отличная от B точка пересечения S с прямой OB,
а B — отличная от A точка пересечения S с прямой MA.
Докажите, что преобразование P проективно.
В этой задаче мы будем рассматривать наборы
из n прямых общего положения, т. е. наборы, в которых
никакие две прямые не параллельны и никакие три не
проходят через одну точку.
Прямая l делит площадь выпуклого многоугольника пополам. Докажите, что эта прямая делит проекцию данного многоугольника на прямую, перпендикулярную l, в отношении, не превосходящем 1 + Доказать, что n² + 5n + 16 не делится на 169 ни при каком натуральном n. Докажите, что 11n+2 + 122n+1 делится на 133 при любом натуральном n. Докажите, что длину биссектрисы la можно вычислить
по следующим формулам:
Пусть α, β и γ - углы треугольника ABC. Докажите, что
Вписанная окружность касается сторон треугольника ABC в точках A1, B1 и C1; точки A2, B2 и C2 симметричны этим точкам относительно биссектрис соответствующих углов треугольника. Докажите, что A2B2 || AB и прямые AA2, BB2 и CC2 пересекаются в одной точке. |
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 46]
а) Прямые l1 и l2 параллельны. Докажите, что
Sl1oSl2 = T2a, где
Ta — параллельный перенос,
переводящий l1 в l2, причем
a
Даны три прямые a, b, c. Докажите, что композиция симметрий
ScoSboSa является симметрией относительно некоторой прямой тогда
и только тогда, когда данные прямые пересекаются в одной точке.
Даны три прямые a, b, c. Пусть
T = SaoSboSc. Докажите, что ToT — параллельный перенос
(или тождественное отображение).
Пусть
l3 = Sl1(l2). Докажите, что
Sl3 = Sl1oSl2oSl1.
Вписанная окружность касается сторон треугольника ABC в точках A1, B1 и C1; точки A2, B2 и C2 симметричны этим точкам относительно биссектрис соответствующих углов треугольника. Докажите, что A2B2 || AB и прямые AA2, BB2 и CC2 пересекаются в одной точке.
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 46]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке