ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Все источники
>>
Книги, журналы
>>
Прасолов В.В., Задачи по планиметрии
>>
глава 19. Гомотетия и поворотная гомотетия
Параграфы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Медианы AA1, BB1 и CC1 треугольника ABC пересекаются в точке M; P — произвольная точка. Прямая la проходит через точку A параллельно прямой PA1; прямые lb и lc определяются аналогично. Докажите, что: а) прямые la, lb и lc пересекаются в одной точке Q; б) точка M лежит на отрезке PQ, причем PM : MQ = 1 : 2. Решение |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 66]
Четырёхугольник разрезан диагоналями на четыре треугольника. Докажите, что точки пересечения медиан этих треугольников образуют параллелограмм.
Докажите, что точка пересечения продолжений боковых сторон трапеции, середины оснований и точка пересечения диагоналей лежат на одной прямой.
а) прямые la, lb и lc пересекаются в одной точке Q; б) точка M лежит на отрезке PQ, причем PM : MQ = 1 : 2.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 66] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|