Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 10 задач
Версия для печати
Убрать все задачи

Постройте треугольник по данным серединам двух сторон и прямой, на которой лежит биссектриса, проведенная к одной из этих сторон.

Вниз   Решение


Докажите, что
а)  5R - r $ \geq$ $ \sqrt{3}$p;
б)  4R - ra $ \geq$ (p - a)[$ \sqrt{3}$ + (a2 + (b - c)2)/(2S)].

ВверхВниз   Решение


Докажите, что  S = rc2tg($ \alpha$/2)tg($ \beta$/2)ctg($ \gamma$/2).

ВверхВниз   Решение


Даны три прямые l1, l2 и l3, пересекающиеся в одной точке, и точка A на прямой l1. Постройте треугольник ABC так, чтобы точка A была его вершиной, а биссектрисы треугольника лежали на прямых l1, l2 и l3.

ВверхВниз   Решение


Из 16 плиток размером 1×3 и одной плитки 1×1 сложили квадрат со стороной 7. Докажите, что плитка 1×1 лежит в центре квадрата или примыкает к его границе.

ВверхВниз   Решение


С помощью одного циркуля
  а) постройте точки пересечения данной окружности S и прямой, проходящей через данные точки A и B;
  б) постройте точку пересечения прямых A1B1 и A2B2, где A1, B1, A2 и B2 – данные точки.

ВверхВниз   Решение


Пользуясь только циркулем, разделите пополам данный отрезок, то есть постройте для данных точек A и B такую точку C, что точки A, B, C лежат на одной прямой и  AC = BC.

ВверхВниз   Решение


Докажите, что существует проективное преобразование, которое данную окружность переводит в окружность, а данную хорду — в ее диаметр.

ВверхВниз   Решение


Даны треугольник ABC и прямая l. Обозначим через A1, B1, C1 середины отрезков, высекаемых на прямой l углами A, B, C, а через A2, B2, C2 — точки пересечения прямых AA1 и BC, BB1 и AC, CC1 и AB. Докажите, что точки A2, B2, C2 лежат на одной прямой.

ВверхВниз   Решение


Дан квадратный лист клетчатой бумаги размером 100×100 клеток. Проведено несколько несамопересекающихся ломаных, идущих по сторонам клеток и не имеющих общих точек. Эти ломаные идут строго внутри квадрата, а концами обязательно выходят на границу. Докажите, что кроме вершин квадрата найдется еще узел (внутри квадрата или на границе), не принадлежащий ни одной ломаной.

Вверх   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 41]      



Задача 58185  (#23.025)

Тема:   [ Шахматная раскраска ]
Сложность: 5
Классы: 8,9

Дан квадратный лист клетчатой бумаги размером 100×100 клеток. Проведено несколько несамопересекающихся ломаных, идущих по сторонам клеток и не имеющих общих точек. Эти ломаные идут строго внутри квадрата, а концами обязательно выходят на границу. Докажите, что кроме вершин квадрата найдется еще узел (внутри квадрата или на границе), не принадлежащий ни одной ломаной.
Прислать комментарий     Решение


Задача 58186  (#23.026)

Тема:   [ Вспомогательная раскраска (прочее) ]
Сложность: 6
Классы: 8,9

Правильный треугольник разбит на n2 одинаковых правильных треугольников (рис.). Часть из них занумерована числами 1, 2,..., m, причем треугольники с последовательными номерами имеют смежные стороны. Докажите, что m$ \le$n2 - n + 1.
Прислать комментарий     Решение


Задача 58187  (#23.027)

Тема:   [ Вспомогательная раскраска (прочее) ]
Сложность: 4
Классы: 8,9

Дно прямоугольной коробки выложено плитками размером 2×2 и 1×4. Плитки высыпали из коробки и потеряли одну плитку 2×2. Вместо нее достали плитку 1×4. Докажите, что выложить дно коробки плитками теперь не удастся.
Прислать комментарий     Решение


Задача 58188  (#23.028)

Тема:   [ Вспомогательная раскраска (прочее) ]
Сложность: 4
Классы: 8,9

Из листа клетчатой бумаги размером 29×29 клеток вырезано 99 квадратиков размером 2×2 клетки. Докажите, что из него можно вырезать еще один такой квадратик.
Прислать комментарий     Решение


Задача 58189  (#23.029)

Тема:   [ Вспомогательная раскраска (прочее) ]
Сложность: 4
Классы: 8,9

Выпуклый n-угольник разбит на треугольники непересекающимися диагоналями, причем в каждой его вершине сходится нечетное число треугольников. Докажите, что n делится на 3.
Прислать комментарий     Решение


Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 41]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .