ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Параграфы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В каждой клетке доски 5×5 клеток сидит жук.
В некоторый момент все жуки переползают на соседние (по
горизонтали или вертикали) клетки. Обязательно ли при
этом останется пустая клетка?
Пусть O — центр вписанной окружности
треугольника ABC, причем
OA На биссектрисе внешнего угла C треугольника
ABC взята точка M, отличная от C. Докажите, что
MA + MB > CA + CB.
а) Постройте с помощью одного циркуля отрезок, который в два раза длиннее данного отрезка.
Точка A расположена на расстоянии 50 см от центра
круга радиусом 1 см. Разрешается отразить точку симметрично
относительно любой прямой, пересекающей круг. Докажите, что:
а) за 25 отражений точку A можно к загнатьк внутрь
данного круга; б) за 24 отражения этого сделать нельзя.
На окружности отметили 4n точек и окрасили их
через одну в красный и синий цвета. Точки каждого цвета
разбили на пары, а точки каждой пары соединили отрезками
того же цвета. Докажите, что если никакие три отрезка не
пересекаются в одной точке, то найдется по крайней мере n
точек пересечения красных отрезков с синими.
Докажите, что
ha Даны две окружности S1, S2 и прямая l. Проведите
прямую l1, параллельную прямой l, так, чтобы:
Дно прямоугольной коробки выложено плитками размером
2×2 и 1×4. Плитки высыпали из
коробки и потеряли одну плитку 2×2. Вместо нее достали плитку
1×4. Докажите, что выложить дно коробки плитками теперь не
удастся.
Дана прямая MN и две точки A и B по одну сторону от нее. Постройте на прямой MN точку X так, что ∠AXM = 2∠BXN. Постройте треугольник ABC по: а) c, a - b (a > b)
и углу C; б) c, a + b и углу C.
В остроугольном треугольнике ABC проведены
медиана AM, биссектриса BK и высота CH. Может ли
площадь треугольника, образованного точками пересечения
этих отрезков, быть больше
0, 499SABC?
Выпуклый n-угольник разбит на треугольники
непересекающимися диагоналями, причем в каждой его вершине сходится
нечетное число треугольников. Докажите, что n делится на 3.
|
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 41]
Дан квадратный лист клетчатой бумаги размером
100×100 клеток. Проведено несколько несамопересекающихся
ломаных, идущих по сторонам клеток и не имеющих общих
точек. Эти ломаные идут строго внутри квадрата, а концами
обязательно выходят на границу. Докажите, что кроме
вершин квадрата найдется еще узел (внутри квадрата или
на границе), не принадлежащий ни одной ломаной.
Правильный треугольник разбит на n2 одинаковых правильных
треугольников (рис.). Часть из них занумерована числами
1, 2,..., m, причем треугольники
с последовательными номерами имеют смежные стороны. Докажите,
что
m
Дно прямоугольной коробки выложено плитками размером
2×2 и 1×4. Плитки высыпали из
коробки и потеряли одну плитку 2×2. Вместо нее достали плитку
1×4. Докажите, что выложить дно коробки плитками теперь не
удастся.
Из листа клетчатой бумаги размером
29×29 клеток вырезано 99
квадратиков размером 2×2 клетки. Докажите, что из
него можно вырезать еще один такой квадратик.
Выпуклый n-угольник разбит на треугольники
непересекающимися диагоналями, причем в каждой его вершине сходится
нечетное число треугольников. Докажите, что n делится на 3.
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 41]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке