ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи На отрезке AE по одну сторону от него построены равносторонние
треугольники ABC и CDE; M и P — середины отрезков
AD и BE. Докажите, что треугольник CPM равносторонний.
Даны две точки A и B и окружность. Найти на окружности точку X так, чтобы прямые AX и BX отсекли на окружности хорду CD, параллельную данной прямой MN. К некоторому натуральному числу справа последовательно приписали два двузначных числа. Полученное число оказалось равным кубу суммы трёх исходных чисел. Найдите все возможные тройки исходных чисел. Два квадрата расположены, как показано на рисунке. Докажите, что площадь чёрного треугольника равна сумме площадей серых. Учитель собирается дать детям задачу следующего вида. Он сообщит им, что он задумал многочлен P(x) степени 2017 с целыми коэффициентами, старший коэффициент которого равен 1. Затем он сообщит им k целых чисел n1, n2, ..., nk и отдельно сообщит значение выражения P(n1)P(n2)...P(nk). По этим данным дети должны найти многочлен, который мог бы задумать учитель. При каком наименьшем k учитель сможет составить задачу такого вида так, чтобы многочлен, найденный детьми, обязательно совпал бы с задуманным? Дан треугольник ABC. Построены четыре окружности равного радиуса На плоскости дано 4000 точек, никакие три из
которых не лежат на одной прямой. Докажите, что существует 1000
непересекающихся четырехугольников (возможно, невыпуклых)
с вершинами в этих точках.
На плоскости дано n точек, причем из любой четверки этих точек
можно выбросить одну точку так, что оставшиеся точки будут лежать
на одной прямой. Докажите, что из данных точек можно выбросить одну
точку так, что все оставшиеся точки будут лежать на одной прямой.
|
Страница: 1 2 3 4 5 >> [Всего задач: 23]
а) Архитектор хочет расположить четыре высотных
здания так, что, гуляя по городу, можно увидеть их шпили
в произвольном порядке (т. е. для любого набора номеров
зданий i, j, k, l можно стоя в некоторой точке и поворачиваясь
в направлении к пок или к противк часовой стрелки, увидеть
сначала шпиль здания i, затем j, k, l). Удастся ли ему это
сделать?
На плоскости дано n точек, причем из любой четверки этих точек
можно выбросить одну точку так, что оставшиеся точки будут лежать
на одной прямой. Докажите, что из данных точек можно выбросить одну
точку так, что все оставшиеся точки будут лежать на одной прямой.
На плоскости дано 400 точек. Докажите, что различных расстояний
между ними не менее 15.
На плоскости дано n
На плоскости дано 4000 точек, никакие три из
которых не лежат на одной прямой. Докажите, что существует 1000
непересекающихся четырехугольников (возможно, невыпуклых)
с вершинами в этих точках.
Страница: 1 2 3 4 5 >> [Всего задач: 23]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке