ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Параграфы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Постройте образ точки A при инверсии относительно
окружности S с центром O.
Дан угол ABC и прямая l. Постройте прямую,
параллельную прямой l, на которой стороны угла ABC
высекают отрезок данной длины a.
Пусть a < b. Докажите, что
a + ha Вокруг эллипса описан прямоугольник. Докажите,
что длина его диагонали не зависит от положения прямоугольника.
Каждая диагональ выпуклого пятиугольника ABCDE
отсекает от него треугольник единичной площади. Вычислите
площадь пятиугольника ABCDE.
На плоскости расположено n Докажите, что если вершины выпуклого n-угольника лежат в узлах клетчатой бумаги, а внутри и на его сторонах других узлов нет, то n ≤ 4. В сегмент вписываются всевозможные пары пересекающихся окружностей,
и для каждой пары через точки их пересечения проводится прямая.
Докажите, что все эти прямые проходят через одну точку (см. задачу 3.44).
|
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 42]
В сегмент вписываются всевозможные пары пересекающихся окружностей,
и для каждой пары через точки их пересечения проводится прямая.
Докажите, что все эти прямые проходят через одну точку (см. задачу 3.44).
Никакие три из четырех точек A, B, C, D не
лежат на одной прямой. Докажите, что угол между описанными
окружностями треугольников ABC и ABD равен углу
между описанными окружностями треугольников ACD и BCD.
Через точки A и B проведены окружности S1 и S2,
касающиеся окружности S, и окружность S3, перпендикулярная S.
Докажите, что S3 образует равные углы с окружностями S1 и S2.
Две окружности, пересекающиеся в точке A, касаются окружности (или
прямой) S1 в точках B1 и C1, а окружности (или прямой) S2
в точках B2 и C2 (причем касание в B2 и C2 такое же,
как в B1 и C1). Докажите, что окружности, описанные вокруг
треугольников AB1C1 и AB2C2, касаются друг друга.
Окружность SA проходит через точки A и C; окружность
SB проходит через точки B и C; центры обеих окружностей
лежат на прямой AB. Окружность S касается окружностей SA
и SB, а кроме того, она касается отрезка AB в точке C1.
Докажите, что CC1 — биссектриса треугольника ABC.
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 42]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке