ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

Автор: Шноль Д.Э.

Компания из нескольких друзей вела переписку так, что каждое письмо получали все, кроме отправителя. Каждый написал одно и то же количество писем, в результате чего всеми вместе было получено 440 писем. Сколько человек могло быть в этой компании?

Вниз   Решение


Одна из диагоналей вписанного в окружность четырёхугольника является диаметром.
Докажите, что проекции противоположных сторон на другую диагональ равны.

ВверхВниз   Решение


Докажите, что при  n > 2  числа  2n – 1  и  2n + 1  не могут быть простыми одновременно.

ВверхВниз   Решение


Можно ли таблицу  n×n  заполнить числами –1, 0, 1 так, чтобы суммы во всех строках, во всех столбцах и на главных диагоналях были различны?

ВверхВниз   Решение


Общество из n членов выбирает из своего состава одного представителя.
  а) Сколькими способами может произойти открытое голосование, если каждый голосует за одного человека (быть может, и за себя)?
  б) Решите ту же задачу, если голосование – тайное, то есть учитывается лишь число голосов, поданных за каждого кандидата, и не учитывается, кто за кого голосовал персонально.

ВверхВниз   Решение


Медианы AA1, BB1 и CC1 треугольника ABC пересекаются в точке M; P — произвольная точка. Прямая la проходит через точку A параллельно прямой PA1; прямые lb и lc определяются аналогично. Докажите, что:
а) прямые la, lb и lc пересекаются в одной точке Q;
б) точка M лежит на отрезке PQ, причем PM : MQ = 1 : 2.

ВверхВниз   Решение


Докажите, что в любом треугольнике точка H пересечения высот (ортоцентр), центр O описанной окружности и точка M пересечения медиан (центр тяжести) лежат на одной прямой, причём точка M расположена между точками O и H, и MH = 2MO.

ВверхВниз   Решение


Даны два треугольника ABC и A1B1C1. Известно, что прямые AA1, BB1 и CC1 пересекаются в одной точке O, и прямые AB1, BC1 и CA1 пересекаются в одной точке O1. Докажите, что прямые AC1, BA1 и CB1 тоже пересекаются в одной точке O2 (теорема о дважды перспективных треугольниках).

Вверх   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 59]      



Задача 56907  (#30.026)

 [Теорема Дезарга]
Темы:   [ Теоремы Чевы и Менелая ]
[ Переведем данную прямую на бесконечность ]
Сложность: 6
Классы: 9,10,11

Прямые  AA1, BB1, CC1 пересекаются в одной точке O. Докажите, что точки пересечения прямых AB и A1B1BC и B1C1AC и A1C1 лежат на одной прямой (Дезарг).
Прислать комментарий     Решение


Задача 58435  (#30.027)

 [Теорема Паппа]
Тема:   [ Переведем данную прямую на бесконечность ]
Сложность: 6
Классы: 10,11

Точки A, B, C лежат на прямой l, а точки A1, B1, C1 — на прямой l1. Докажите, что точки пересечения прямых AB1 и BA1, BC1 и CB1, CA1 и AC1 лежат на одной прямой (Папп).
Прислать комментарий     Решение


Задача 58436  (#30.028)

Тема:   [ Переведем данную прямую на бесконечность ]
Сложность: 6
Классы: 10,11

Дан выпуклый четырехугольник ABCD. Пусть P, Q — точки пересечения продолжений противоположных сторон AB и CD, AD и BC соответственно, R — произвольная точка внутри четырехугольника. Пусть K — точка пересечения прямых BC и PR, L — точка пересечения прямых AB и QR, M — точка пересечения прямых AK и DR. Докажите, что точки L, M и C лежат на одной прямой.
Прислать комментарий     Решение


Задача 58437  (#30.029)

Тема:   [ Переведем данную прямую на бесконечность ]
Сложность: 6
Классы: 10,11

Даны два треугольника ABC и A1B1C1. Известно, что прямые AA1, BB1 и CC1 пересекаются в одной точке O, и прямые AB1, BC1 и CA1 пересекаются в одной точке O1. Докажите, что прямые AC1, BA1 и CB1 тоже пересекаются в одной точке O2 (теорема о дважды перспективных треугольниках).
Прислать комментарий     Решение


Задача 58438  (#30.030)

Тема:   [ Переведем данную прямую на бесконечность ]
Сложность: 6
Классы: 10,11

Даны два треугольника ABC и A1B1C1. Известно, что прямые AA1, BB1 и CC1 пересекаются в одной точке O, прямые AA1, BC1 и CB1 пересекаются в одной точке O1 и прямые AC1, BB1 и CA1 пересекаются в одной точке O2. Докажите, что прямые AB1, BA1 и CC1 тоже пересекаются в одной точке O3 (теорема о трижды перспективных треугольниках).
Прислать комментарий     Решение


Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 59]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .