Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 11 задач
Версия для печати
Убрать все задачи

Докажите, что любая диагональ четырёхугольника меньше половины его периметра.

Вниз   Решение


а) Докажите, что S(A, B, C) = - S(B, A, C) = S(B, C, A).
б) Докажите, что для любых точек A, B, C и D справедливо равенство S(A, B, C) = S(D, A, B) + S(D, B, C) + S(D, C, A).

ВверхВниз   Решение


Три бегуна A, B и C бегут по параллельным дорожкам с постоянными скоростями. В начальный момент площадь треугольника ABC равна 2, через 5 с равна 3. Чему может быть она равна еще через 5 с?

ВверхВниз   Решение


Две окружности радиуса R пересекаются в точках M и N. Пусть A и B — точки пересечения серединного перпендикуляра к отрезку MN с этими окружностями, лежащие по одну сторону от прямой MN. Докажите, что MN2 + AB2 = 4R2.

ВверхВниз   Решение


Никакие три из четырех точек A, B, C, D не лежат на одной прямой. Докажите, что угол между описанными окружностями треугольников ABC и ABD равен углу между описанными окружностями треугольников ACD и BCD.

ВверхВниз   Решение


Каждая диагональ выпуклого пятиугольника ABCDE отсекает от него треугольник единичной площади. Вычислите площадь пятиугольника ABCDE.

ВверхВниз   Решение


Если на плоскости заданы пять точек, то, рассматривая всевозможные тройки этих точек, можно образовать 30 углов. Обозначим наименьший из этих углов $ \alpha$. Найдите наибольшее значение $ \alpha$.

ВверхВниз   Решение


Докажите, что с помощью гомотетии с центром (0, 0) параболу 2py = x2 можно перевести в параболу y = x2.

ВверхВниз   Решение


Внутри окружности с центром O дана точка A. Найдите точку M окружности, для которой угол OMA максимален.

ВверхВниз   Решение


Внутри прямоугольника ABCD взята точка M. Докажите, что существует выпуклый четырехугольник с перпендикулярными диагоналями длины AB и BC, стороны которого равны AM, BM, CM, DM.

ВверхВниз   Решение


Окружность радиуса 2$ \sqrt{x_0^2+x_0^{-2}}$ с центром (x0, x0-1) пересекает гиперболу xy = 1 в точке (- x0, - x0-1) и в точках A, B, C. Докажите, что треугольник ABC равносторонний.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 10]      



Задача 58508  (#31.041)

Тема:   [ Кривые второго порядка ]
Сложность: 3
Классы: 10

Точки A и B лежат на гиперболе. Прямая AB пересекает асимптоты гиперболы в точках A1 и B1.
а) Докажите, что AA1 = BB1 и AB1 = BA1.
б) Докажите, что если прямая A1B1 касается гиперболы в точке X, то X — середина отрезка A1, B1.
Прислать комментарий     Решение


Задача 58509  (#31.042)

Тема:   [ Кривые второго порядка ]
Сложность: 3
Классы: 10

Докажите, что окружность девяти точек треугольника ABC, вершины которого лежат на равнобочной гиперболе, проходит через центр O гиперболы.
Прислать комментарий     Решение


Задача 58510  (#31.043)

Тема:   [ Кривые второго порядка ]
Сложность: 3
Классы: 10

Вершины треугольника лежат на гиперболе xy = 1. Докажите, что его ортоцентр тоже лежит на этой гиперболе.
Прислать комментарий     Решение


Задача 58511  (#31.044)

Тема:   [ Кривые второго порядка ]
Сложность: 3
Классы: 10

Окружность радиуса 2$ \sqrt{x_0^2+x_0^{-2}}$ с центром (x0, x0-1) пересекает гиперболу xy = 1 в точке (- x0, - x0-1) и в точках A, B, C. Докажите, что треугольник ABC равносторонний.
Прислать комментарий     Решение


Задача 58512  (#31.045)

Тема:   [ Кривые второго порядка ]
Сложность: 3
Классы: 10

Докажите, что асимптоты гиперболы

ax2 + 2bxy + cy2 + dx + ey + f = 0

ортогональны тогда и только тогда, когда a + c = 0.
Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 10]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .