ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

На окружности с диаметром AB взяты точки C и D. Прямая CD и касательная к окружности в точке B пересекаются в точке X. Выразите BX через радиус окружности R и углы  $ \varphi$ = $ \angle$BAC и  $ \psi$ = $ \angle$BAD.

Вниз   Решение


Автор: Фольклор

Укажите все такие натуральные n и целые неравные друг другу x и y, при которых верно равенство:   x + x² + x4 + ... + x2n = y + y² + y4 + ... + y2n.

 

ВверхВниз   Решение


Купец случайно перемешал конфеты первого сорта (по 3 руб. за фунт) и конфеты второго сорта (по 2 руб. за фунт). По какой цене надо продавать эту смесь, чтобы выручить ту же сумму, если известно, что первоначально общая стоимость всех конфет первого сорта была равна общей стоимости всех конфет второго сорта?

ВверхВниз   Решение


Докажите, что для любого натурального n  4n + 15n – 1 делится на 9.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 33]      



Задача 60296  (#01.023)

Темы:   [ Арифметика остатков (прочее) ]
[ Разложение на множители ]
Сложность: 3
Классы: 8,9,10

Докажите, что для любого натурального n  4n + 15n – 1 делится на 9.

Прислать комментарий     Решение

Задача 60297  (#01.024)

Темы:   [ Арифметика остатков (прочее) ]
[ Разложение на множители ]
Сложность: 3+
Классы: 8,9,10

Докажите, что для любого натурального n  23n + 1  делится на 3n+1.

Прислать комментарий     Решение

Задача 60298  (#01.025)

Темы:   [ Признаки делимости на 3 и 9 ]
[ Индукция (прочее) ]
Сложность: 2+
Классы: 8,9,10

Докажите, что для всех натуральных n число, записываемое 3n единицами, делится на 3n.

Прислать комментарий     Решение

Задача 60299  (#01.026)

Темы:   [ Разбиения на пары и группы; биекции ]
[ Принцип Дирихле (прочее) ]
[ Делимость чисел. Общие свойства ]
Сложность: 4-
Классы: 8,9,10

Из чисел от 1 до 2n выбрано  n + 1  число. Докажите, что среди выбранных чисел найдутся два, одно из которых делится на другое.

Прислать комментарий     Решение

Задача 77992  (#01.027)

Темы:   [ Уравнения высших степеней (прочее) ]
[ Треугольник Паскаля и бином Ньютона ]
Сложность: 3+
Классы: 11

Найти корни уравнения   

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 33]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .