Processing math: 100%
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

Автор: Гравин Н.

В стране Леонардии все дороги – с односторонним движением. Каждая дорога соединяет два города и не проходит через другие города. Департамент статистики вычислил для каждого города суммарное число жителей в городах, откуда в него ведут дороги, и суммарное число жителей в городах, куда ведут дороги из него. Докажите, что хотя бы для одного города первое число оказалось не меньше второго.

Вниз   Решение


Несколько прямых делят плоскость на части. Докажите, что эти части можно раскрасить в 2 цвета так, что граничащие части будут иметь разный цвет.

ВверхВниз   Решение


Площадь треугольника ABC равна 2. Найдите площадь сечения пирамиды ABCD плоскостью, проходящей через середины рёбер AD , BD , CD .

ВверхВниз   Решение


Про коэффициенты a, b, c и d двух квадратных трёхчленов  x² + bx + c  и  x² + ax + d  известно, что 0 < a < b < c < d.
Могут ли эти трёхчлены иметь общий корень?

ВверхВниз   Решение


Найдите остаток от деления многочлена  P(x) = x81 + x27 + x9 + x³ + x  на
  a)  x – 1;
  б)  x² – 1.

ВверхВниз   Решение


В ребусе ТУР+ТУР+ТУР+...+ТУР=ТУРЛОМ одинаковые буквы заменяют одинаковые цифры, разные буквы заменяют разные цифры. Часть одинаковых слагаемых мы заменили многоточием. Сколько всего может быть ТУРов, чтобы ребус имел решение? Найдите наименьшее и наибольшее количества.

ВверхВниз   Решение


Решите уравнение:  x(x + 1) = 2014·2015.

ВверхВниз   Решение


Докажите следующие формулы:

an+1bn+1 = (a – b)(an + an–1b + ... + bn);

a2n+1 + b2n+1 = (a + b)(a2na2n–1b + a2n–2b2 – ... + b2n).

ВверхВниз   Решение


Докажите неравенство: |x1 + ... + xn| ≤ |x1| + ... + |xn|, где x1,..., xn — произвольные числа.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 33]      



Задача 60306  (#01.033)

Темы:   [ Индукция (прочее) ]
[ Алгебраические неравенства (прочее) ]
[ Разложение на множители ]
Сложность: 2+
Классы: 8,9

Докажите неравенство:  2n > n.

Прислать комментарий     Решение

Задача 60307  (#01.034)

Темы:   [ Алгебраические неравенства (прочее) ]
[ Произведения и факториалы ]
Сложность: 3
Классы: 8,9,10

Докажите неравенство для натуральных n:  

Прислать комментарий     Решение

Задача 60308  (#01.035)

Темы:   [ Индукция (прочее) ]
[ Алгебраические неравенства (прочее) ]
Сложность: 4-
Классы: 8,9,10,11

Докажите неравенство   nn+1 > (n + 1)n  для натуральных  n > 2.

Прислать комментарий     Решение

Задача 60309  (#01.036)

Темы:   [ Свойства модуля. Неравенство треугольника ]
[ Индукция (прочее) ]
[ Неравенства с модулями ]
Сложность: 2
Классы: 8

Докажите неравенство: |x1 + ... + xn| ≤ |x1| + ... + |xn|, где x1,..., xn — произвольные числа.
Прислать комментарий     Решение


Задача 60310  (#01.037)

Тема:   [ Неравенство Коши ]
Сложность: 4
Классы: 9,10,11

Докажите неравенство   ,   где x1, ..., xn – положительные числа.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 33]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .