Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 13 задач
Версия для печати
Убрать все задачи

Приведите пример вписанного четырехугольника с попарно различными целочисленными длинами сторон, у которого длины диагоналей, площадь и радиус описанной окружности — целые числа (Брахмагупта).

Вниз   Решение


Доказать, что в трапеции сумма углов при меньшем основании больше, чем при большем.

ВверхВниз   Решение


Докажите неравенство для натуральных  n > 1:  

ВверхВниз   Решение


Докажите неравенство   nn+1 > (n + 1)n  для натуральных  n > 2.

ВверхВниз   Решение


Дан четырёхугольник ABCD. Оказалось, что описанная окружность треугольника ABC, касается стороны CD, а описанная окружность треугольника ACD касается стороны AB. Докажите, что диагональ AC меньше, чем расстояние между серединами сторон AB и CD.

ВверхВниз   Решение


Выпуклый многоугольник обладает следующим свойством: если все прямые, на которых лежат его стороны, параллельно перенести на расстояние 1 во внешнюю сторону, то полученные прямые образуют многоугольник, подобный исходному, причём параллельные стороны окажутся пропорциональными. Доказать, что в данный многоугольник можно вписать окружность.

ВверхВниз   Решение


Даны числа $ \alpha_{1}$,$ \alpha_{2}$,...,$ \alpha_{k}$, причём для всех натуральных нечётных n имеет место равенство

$\displaystyle \alpha_{1}^{n}$ + $\displaystyle \alpha_{2}^{n}$ + ... + $\displaystyle \alpha_{k}^{n}$ = 0.

Доказать, что те из чисел $ \alpha_{1}$,$ \alpha_{2}$,...,$ \alpha_{k}$, которые не равны нулю, можно разбить на пары таким образом, чтобы два числа, входящие в одну и ту же пару, были бы равны по абсолютной величине, но противоположны по знаку.

ВверхВниз   Решение


Точки E, F – середины сторон BC, CD квадрата ABCD. Прямые AE и BF пересекаются в точке P. Докажите, что  ∠PDA = ∠AED.

ВверхВниз   Решение


На плоскости даны три параллельные прямые.
Найдите геометрическое место центров вписанных окружностей треугольников, вершины которых расположены (по одной) на этих прямых.

ВверхВниз   Решение


В стакане находятся бактерии. Через секунду каждая из бактерий делится пополам, затем каждая из получившихся бактерий через секунду делится пополам и так далее. Через минуту стакан полон. Через какое время стакан был заполнен наполовину?

ВверхВниз   Решение


Решите в натуральных числах уравнение  x² + y² = z².

ВверхВниз   Решение


Докажите неравенство для натуральных n:  

ВверхВниз   Решение


Вычислите произведение  

Вверх   Решение

Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 59]      



Задача 60309  (#01.036)

Темы:   [ Свойства модуля. Неравенство треугольника ]
[ Индукция (прочее) ]
[ Неравенства с модулями ]
Сложность: 2
Классы: 8

Докажите неравенство: |x1 + ... + xn| ≤ |x1| + ... + |xn|, где x1,..., xn — произвольные числа.
Прислать комментарий     Решение


Задача 60310  (#01.037)

Тема:   [ Неравенство Коши ]
Сложность: 4
Классы: 9,10,11

Докажите неравенство   ,   где x1, ..., xn – положительные числа.

Прислать комментарий     Решение

Задача 60311  (#01.038)

Темы:   [ Индукция (прочее) ]
[ Алгебраические неравенства (прочее) ]
Сложность: 2+
Классы: 8,9,10

Докажите неравенство  2m+n–2mn,  где m и n – натуральные числа.

Прислать комментарий     Решение

Задача 60312  (#01.039)

Темы:   [ Индукция (прочее) ]
[ Алгебраические неравенства (прочее) ]
[ Произведения и факториалы ]
Сложность: 3-
Классы: 8,9,10

Для каких n выполняются неравенства:   а)  n! > 2n;   б)  2n > n².

Прислать комментарий     Решение

Задача 60313  (#01.040)

Темы:   [ Индукция (прочее) ]
[ Тождественные преобразования ]
[ Разложение на множители ]
Сложность: 3
Классы: 7,8,9

Вычислите произведение  

Прислать комментарий     Решение

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 59]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .