Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 19 задач
Версия для печати
Убрать все задачи

В первой четверти у Васи было пять оценок по математике, больше всего среди них пятёрок. При этом оказалось, что медиана всех оценок равна 4, а среднее арифметическое 3,8. Какие оценки могли быть у Васи?

Вниз   Решение


В ящиках лежат орехи. Известно, что в среднем в каждом ящике 10 орехов, а среднее арифметическое квадратов чисел орехов в ящиках меньше 1000. Докажите, что по крайней мере 10% ящиков не пустые.

ВверхВниз   Решение


Алфавит племени Мумбо-Юмбо состоит из трёх букв. Словом является любая последовательность, состоящая не более чем из четырёх букв.
Сколько слов в языке племени Мумбо-Юмбо?

ВверхВниз   Решение


В страшную грозу по верёвочной лестнице цепочкой поднимаются n гномиков. Если вдруг случится удар грома, то от испуга каждый гномик, независимо от других, может упасть с вероятностью p  (0 < p < 1).  Если гномик падает, то он сшибает и всех гномиков, которые находятся ниже. Найдите:
  а) Вероятность того, что упадёт ровно k гномиков.
  б) Математическое ожидание числа упавших гномиков.

ВверхВниз   Решение


Последовательность состоит из 19 единиц и 49 нулей, стоящих в случайном порядке. Назовём группой максимальную подпоследовательность из одинаковых символов. Например, в последовательности 110001001111 пять групп: две единицы, потом три нуля, потом одна единица, потом два нуля и, наконец, четыре единицы. Найдите математическое ожидание длины первой группы.

ВверхВниз   Решение


Докажите или опровергните следующее утверждение: круг площадью $ {\frac{25}{8}}$ можно поместить внутрь треугольника со сторонами 3, 4 и 5.

ВверхВниз   Решение


Автор: Ионин Ю.И.

а) Из любых двухсот целых чисел можно выбрать сто чисел, сумма которых делится на 100. Докажите это.
б) Из любых  2n – 1  целых чисел можно выбрать n, сумма которых делится на n. Докажите это.

ВверхВниз   Решение


В равнобедренном треугольнике боковая сторона равна 20, а диаметр описанной окружности равен 25. Найдите радиус вписанной окружности.

ВверхВниз   Решение


Выпуклый многоугольник разрезан на выпуклые семиугольники (так, что каждая сторона многоугольника является стороной одного из семиугольников). Докажите, что найдутся четыре соседние вершины многоугольника, принадлежащие одному семиугольнику.

ВверхВниз   Решение


Сколько диагоналей имеет выпуклый:
а) 10-угольник;   б) k-угольник  (k > 3)?

ВверхВниз   Решение


Окружности  $ \alpha$,$ \beta$,$ \gamma$ и $ \delta$ касаются данной окружности в вершинах A, B, C и D выпуклого четырехугольника ABCD. Пусть  t$\scriptstyle \alpha$$\scriptstyle \beta$ — длина общей касательной к окружностям $ \alpha$ и $ \beta$ (внешней, если оба касания внутренние или внешние одновременно, и внутренней, если одно касание внутреннее, а другое внешнее);  t$\scriptstyle \beta$$\scriptstyle \gamma$, t$\scriptstyle \gamma$$\scriptstyle \delta$ и т. д. определяются аналогично. Докажите, что  t$\scriptstyle \alpha$$\scriptstyle \beta$t$\scriptstyle \gamma$$\scriptstyle \delta$ + t$\scriptstyle \beta$$\scriptstyle \gamma$t$\scriptstyle \delta$$\scriptstyle \alpha$ = t$\scriptstyle \alpha$$\scriptstyle \gamma$t$\scriptstyle \beta$$\scriptstyle \delta$ (обобщенная теорема Птолемея).

ВверхВниз   Решение


В футбольной команде (11 человек) нужно выбрать капитана и его заместителя. Сколькими способами это можно сделать?

ВверхВниз   Решение


На сушке в случайном порядке (как достали из стиральной машины) висит n пар носков. Двух одинаковых пар нет. Носки висят за сохнущей простыней, поэтому Рассеянный Учёный достает по одному носку на ощупь и сравнивает каждый новый носок со всеми предыдущими. Найдите математическое ожидание числа носков, снятых к моменту, когда у Учёного окажется какая-нибудь пара.

ВверхВниз   Решение


Стороны  BC = a,  AC = b,  AB = c  треугольника ABC образуют арифметическую прогрессию, причём  a < b < c.  Биссектриса угла B пересекает описанную окружность в точке B1. Докажите, что центр O вписанной окружности делит отрезок BB1 пополам.

ВверхВниз   Решение


Сколькими способами можно поставить на шахматную доску белого и чёрного королей так, чтобы получилась допустимая правилами игры позиция?

ВверхВниз   Решение


Сколько существует трёхзначных чисел, в записи которых цифры 1, 2, 3 встречаются ровно по одному разу?

ВверхВниз   Решение


В окружность вписан неправильный многоугольник. Если вершина A разбивает дугу, заключенную между двумя другими вершинами, на две неравные части, то такая вершина A называется неустойчивой. Каждую секунду какая-нибудь неустойчивая вершина перепрыгивает в середину своей дуги. В результате каждую секунду образуется новый многоугольник. Докажите, что сколько бы секунд ни прошло, многоугольник никогда не будет равным исходному.

ВверхВниз   Решение


У двух человек было два квадратных торта. Каждый сделал на своём торте по 2 прямолинейных разреза от края до края. При этом у одного получилось три куска, а у другого  — четыре. Как это могло быть?

ВверхВниз   Решение


  а) В Стране Чудес есть три города A, B и C. Из города A в город B ведет 6 дорог, а из города B в город C – 4 дороги.
Сколькими cпособами можно проехать от A до C?
  б) В Стране Чудес построили еще один город D и несколько новых дорог – две из A в D и две из D в C.
Сколькими способами можно теперь добраться из города A в город C?

Вверх   Решение

Задачи

Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 559]      



Задача 30313  (#032)

Тема:   [ Четность и нечетность ]
Сложность: 2+
Классы: 6,7

Можно ли выписать в ряд по одному разу цифры от 1 до 9 так, чтобы между единицей и двойкой, двойкой и тройкой, ..., восьмёркой и девяткой было нечётное число цифр?

Прислать комментарий     Решение

Задача 30314  (#1, 2, 5)

Темы:   [ Перебор случаев ]
[ Правило произведения ]
Сложность: 2
Классы: 5,6,7

а) В магазине "Все для чая" есть 5 разных чашек и 3 разных блюдца. Сколькими способами можно купить чашку с блюдцем?

б) В магазине есть еще 4 чайные ложки. Сколькими способами можно купить комплект из чашки, блюдца и ложки?

в) В магазине по-прежнему продается 5 чашек, 3 блюдца и 4 чайные ложки. Сколькими способами можно купить два предмета с разными названиями?

Прислать комментарий     Решение


Задача 60335  (#3, 4)

Тема:   [ Правило произведения ]
Сложность: 2
Классы: 6,7,8

  а) В Стране Чудес есть три города A, B и C. Из города A в город B ведет 6 дорог, а из города B в город C – 4 дороги.
Сколькими cпособами можно проехать от A до C?
  б) В Стране Чудес построили еще один город D и несколько новых дорог – две из A в D и две из D в C.
Сколькими способами можно теперь добраться из города A в город C?

Прислать комментарий     Решение

Задача 60349  (#006)

Темы:   [ Правило произведения ]
[ Десятичная система счисления ]
Сложность: 2
Классы: 6,7,8

Назовём натуральное число "симпатичным", если в его записи встречаются только нечётные цифры.
Сколько существует четырёхзначных "симпатичных" чисел?

Прислать комментарий     Решение

Задача 30320  (#007)

Тема:   [ Правило произведения ]
Сложность: 2
Классы: 5,6,7

Монету бросают трижды. Сколько разных последовательностей орлов и решек можно при этом получить?

Прислать комментарий     Решение

Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 559]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .