Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

Четыре дома расположены по окружности. Где надо вырыть колодец, чтобы сумма расстояний от домов до колодца была наименьшей?

Вниз   Решение


Петя и Вася выписывают 12-значное число, ставя цифры по очереди, начиная со старшего разряда. Начинает Петя.

Докажите, что какие бы цифры он не писал, Вася всегда сможет добиться, чтобы получившееся число делилось на 9.

ВверхВниз   Решение


Две окружности имеют радиусы R1 и R2, а расстояние между их центрами равно d. Докажите, что эти окружности ортогональны тогда и только тогда, когда  d2 = R12 + R22.

ВверхВниз   Решение


В ряд выписаны в порядке возрастания числа, делящиеся на 9: 9, 18, 27, 36, ... . Под каждым числом этого ряда записана его сумма цифр.
  а) На каком месте во втором ряду впервые встретится число 81?
  б) Что встретится раньше: четыре раза подряд число 27 или один раз число 36?

ВверхВниз   Решение


100 идущих подряд натуральных чисел отсортировали по возрастанию суммы цифр, а числа с одинаковой суммой цифр – просто по возрастанию. Могли ли числа 2010 и 2011 оказаться рядом?

ВверхВниз   Решение


Пусть m1(x), ..., mn(x) – попарно взаимно простые многочлены, a1(x), ..., an(x) – произвольные многочлены.
Докажите, что существует ровно один такой многочлен p(x), что
    p(x) ≡ a1(x) (mod m1(x)),
      ...
    p(x) ≡ an(x) (mod mn(x))
и  deg p(x) < deg m1(x) + ... + deg mn(x).

ВверхВниз   Решение


Многочлен P(x) дает остаток 2 при делении на  x – 1,  и остаток 1 при делении на  x – 2.
Какой остаток дает P(x) при делении на многочлен  (x – 1)(x – 2)?

ВверхВниз   Решение


Автор: Фольклор

Найдите какие-нибудь семь последовательных натуральных чисел, каждое из которых можно изменить (увеличить или уменьшить) на 1 таким образом, чтобы произведение семи полученных в результате чисел равнялось произведению семи исходных чисел.

ВверхВниз   Решение


Пользуясь схемой Горнера, разложите  x4 + 2x3 – 3x2 – 4x + 1  по степеням  x + 1.

Вверх   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 [Всего задач: 45]      



Задача 61000  (#06.077)

 [Схема Горнера]
Темы:   [ Тождественные преобразования ]
[ Теорема Безу. Разложение на множители ]
Сложность: 3
Классы: 8,9,10,11

Значение многочлена  Pn(x) = anxn + an–1xn–1 + ... + a1x + a0    (an ≠ 0)  в точке  x = c  можно вычислить, используя ровно n умножений. Для этого нужно представить многочлен Pn(x) в виде  Pn(x) = (...(anx + an–1)x + ... + a1)x + a0.   Пусть  bn, bn–1, ..., b0  – это значения выражений, которые получаются в процессе вычисления Pn(c), то есть  bn = anbk = cbk+1 + ak  (k = n – 1, ..., 0).  Докажите, что при делении многочлена Pn(x) на  x – c  с остатком, у многочлена в частном коэффициенты будут совпадать с числами  bn–1, ..., b1,  а остатком будет число b0. Таким образом, будет справедливо равенство:
Pn(x) = (x – c)(bnxn–1 + ... + b2x + b1) + b0.

Прислать комментарий     Решение

Задача 61001  (#06.078)

 [Формулы сокращенного умножения]
Тема:   [ Разложение на множители ]
Сложность: 2
Классы: 7,8,9

Докажите следующие формулы:

an+1bn+1 = (a – b)(an + an–1b + ... + bn);

a2n+1 + b2n+1 = (a + b)(a2na2n–1b + a2n–2b2 – ... + b2n).

Прислать комментарий     Решение

Задача 61002  (#06.079)

 [Формула Тейлора для многочленов]
Темы:   [ Теоремы Тейлора и приближения функций ]
[ Многочлен n-й степени имеет не более n корней ]
[ Свойства коэффициентов многочлена ]
Сложность: 4-
Классы: 10,11

Докажите, что любой многочлен P(x) степени n можно единственным образом разложить по степеням  x – c:

P(x) = ck(x – c)k,

причем коэффициенты ck могут быть найдены по формуле

ck =         (0 k n).

Прислать комментарий     Решение

Задача 61003  (#06.080)

Темы:   [ Деление многочленов с остатком. НОД и НОК многочленов ]
[ Теорема Безу. Разложение на множители ]
Сложность: 3+
Классы: 8,9,10,11

Пользуясь схемой Горнера, разложите  x4 + 2x3 – 3x2 – 4x + 1  по степеням  x + 1.

Прислать комментарий     Решение

Задача 61004  (#06.081)

Темы:   [ Деление многочленов с остатком. НОД и НОК многочленов ]
[ Теорема Безу. Разложение на множители ]
Сложность: 3+
Классы: 8,9,10,11

Разложите  P(x + 3)  по степеням x, где  P(x) = x4x3 + 1.

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 [Всего задач: 45]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .