ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи
В правильной четырёхугольной пирамиде SABCD , каждое ребро
которой равно b , построено сечение плоскостью, параллельной диагонали
основания BD и боковому ребру SA и пересекающей ребро AB пирамиды.
Периметр многоугольника, полученного в этом сечении, равен
2(2+
Метод Ньютона (см. задачу
9.77) не всегда позволяет приблизиться
к корню уравнения f (x) = 0. Для многочлена
f (x) = x(x - 1)(x + 1)
найдите начальное условие x0 такое, что
f (x0)
В правильную четырёхугольную пирамиду SABCD ( S – вершина) вписана
сфера. Сторона основания пирамиды равна 6, а высота пирамиды равна 4.
Точка E выбрана на ребре SC , причём SE= Высота SO правильной четырёхугольной пирамиды SABCD образует с боковым ребром угол α , объём этой пирамиды равен V . Вершина второй правильной четырёхугольной пирмиды находится в точке S , центр основания – в точке C , а одна из вершин основания лежит на прямой SO . Найдите объём общей части этих пирамид. Перепишите формулы Муавра (см. задачу 61088), используя вместо тригонометрических функций комплексную экспоненту. Докажите, что сумма расстояний от произвольной точки X до вершин правильного n-угольника будет наименьшей, если X – центр n-угольника. Пусть fk,l(x) – производящая функция последовательности Pk,l(n) из задачи 61525: fk,l(x) = Pk,l(0) + xPk,l(1) + ... + xklPk,l(kl). а) Докажите равенства: fk,l(x) = fk–1,l(x) + xkfk,l–1(x) = fk,l–1(x) + xlfk–1,l(x). б) Докажите, что функции fk,l(x) совпадают с многочленами Гаусса gk,l(x) (определение многочленов Гаусса смотри здесь).
В правильной четырёхугольной пирамиде SABCD , каждое ребро
которой равно 2, построено сечение плоскостью, параллельной диагонали
основания AC и боковому ребру SB пирамиды и пересекающей ребро AB .
Найдите периметр многоугольника, полученного в этом сечении, если
нижнее основание сечения равно Пусть точка A' лежит на одной из сторон трапеции ABCD , причём прямая AA' делит площадь трапеции пополам. Точки B' , C' и D' определяются аналогично. Докажите, что точка пересечения диагоналей четырёхугольников ABCD и A'B'C'D' симметричны относительно середины средней линии трапеции ABCD . На двух параллельных прямых a и b выбраны точки A1, A2, ..., Am и B1, B2, ..., Bn
соответственно и проведены все отрезки вида AiBj Рассмотрим окружность радиуса 1. Опишем около нее и впишем в нее правильные
n-угольники. Обозначим их периметры через Pn (для описанного) и pn (для вписанного). |
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 44]
Предположим, что цепные дроби
Метод Ньютона (см. задачу
9.77) не всегда позволяет приблизиться
к корню уравнения f (x) = 0. Для многочлена
f (x) = x(x - 1)(x + 1)
найдите начальное условие x0 такое, что
f (x0)
Пусть многочлен P(x) = xn + an–1xn–1 + ... + a1x + a0 имеет корни x1, x2, ..., xn, причем |x1| > |x2| > ... > |xn|. В задаче 60965 был предъявлен способ построения многочлена Q(x) степени n, корнями которого являются числа а) б)
Постройте последовательность полиномов, которая получается, если метод Лобачевского (см. задачу 61333) применить для приближенного нахождения корней многочлена x² – x – 1. Какие последовательности будут сходиться к корням x1 и x2, если |x1| > |x2|?
Рассмотрим окружность радиуса 1. Опишем около нее и впишем в нее правильные
n-угольники. Обозначим их периметры через Pn (для описанного) и pn (для вписанного).
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 44]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке