Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 13 задач
Версия для печати
Убрать все задачи

Будем называть флажком пятиугольник, вершины которого — вершины некоторого квадрата и его центр. Разрежьте фигуру ниже справа на флажки (не обязательно одинаковые).

Вниз   Решение


200 учеников выстроены прямоугольником по 10 человек в каждом поперечном ряду и по 20 человек в каждом продольном ряду. В каждом продольном ряду выбран самый высокий ученик, а затем из отобранных 10 человек выбран самый низкий. С другой стороны, в каждом поперечном ряду выбран самый низкий ученик, а затем среди отобранных 20 выбран самый высокий. Кто из двоих окажется выше?

ВверхВниз   Решение


На графике многочлена с целыми коэффициентами отмечены две точки с целыми координатами.
Докажите, что если расстояние между ними – целое число, то соединяющий их отрезок параллелен оси абсцисс.

ВверхВниз   Решение


Дан правильный треугольник ABC. На стороне AB отмечена точка K, на стороне BC — точки L и M (L лежит на отрезке BM) так, что KL = KM, BL = 2, AK = 3. Найдите CM.

ВверхВниз   Решение


Решить систему уравнений:   x1x2 = x2x3 = ... = xn–1xn = xnx1 = 1.

ВверхВниз   Решение


Дана бесконечная клетчатая бумага со стороной клетки, равной единице. Расстоянием между двумя клетками называется длина кратчайшего пути ладьи от одной клетки до другой (считается путь центра ладьи). В какое наименьшее число красок нужно раскрасить доску (каждая клетка закрашивается одной краской), чтобы две клетки, находящиеся на расстоянии 6, были всегда окрашены разными красками?

ВверхВниз   Решение


В одной вершине куба написано число 1, а в остальных – нули. Можно прибавлять по единице к числам в концах любого ребра.
Можно ли добиться, чтобы все числа делились  а) на 2;  б) на 3?

ВверхВниз   Решение


На доске написаны числа 1, 2, 3, ..., 19, 20. Разрешается стереть любые два числа a и b и вместо них написать число  a + b – 1.
Какое число может остаться на доске после 19 таких операций?

ВверхВниз   Решение


В некотором городе каждая улица идет либо с севера на юг, либо с востока на запад. Автомобилист совершил прогулку по этому городу, сделав ровно сто поворотов налево. Сколько поворотов направо он мог сделать при этом, если никакое место он не проезжал дважды и в конце вернулся назад?

ВверхВниз   Решение


Существует ли выпуклый пятиугольник, в котором каждая диагональ равна какой-то стороне?

ВверхВниз   Решение


Внутри равностороннего треугольника со стороной 1 расположено пять точек. Докажите, что расстояние между некоторыми двумя из них меньше 0, 5.

ВверхВниз   Решение


Квадрат ABCD и равносторонний треугольник MKL расположены так, как это показано на рисунке. Найдите угол PQD.

ВверхВниз   Решение


Найдите произведения следующих формальных степенных рядов:

а) (1 + x + x2 + x3 +...)(1 - x + x2 - x3 +...);
б) (1 + x + x2 + x3 +...)2;
в) $ \left(\vphantom{1+x+\dfrac{x^2}{2!}+\ldots+\dfrac{x^n}{n!}+\ldots}\right.$1 + x + $ {\dfrac{x^2}{2!}}$ +...+ $ {\dfrac{x^n}{n!}}$ +...$ \left.\vphantom{1+x+\dfrac{x^2}{2!}+\ldots+\dfrac{x^n}{n!}+\ldots}\right)$$ \left(\vphantom{1-x+\dfrac{x^2}{2!}-\ldots+\dfrac{(-x)^n}{n!}+\ldots}\right.$1 - x + $ {\dfrac{x^2}{2!}}$ -...+ $ {\dfrac{(-x)^n}{n!}}$ +...$ \left.\vphantom{1-x+\dfrac{x^2}{2!}-\ldots+\dfrac{(-x)^n}{n!}+\ldots}\right)$.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 33]      



Задача 61487  (#11.060)

Тема:   [ Формальные степенные ряды ]
Сложность: 3
Классы: 8,9,10,11

Найдите произведения следующих формальных степенных рядов:

а) (1 + x + x2 + x3 +...)(1 - x + x2 - x3 +...);
б) (1 + x + x2 + x3 +...)2;
в) $ \left(\vphantom{1+x+\dfrac{x^2}{2!}+\ldots+\dfrac{x^n}{n!}+\ldots}\right.$1 + x + $ {\dfrac{x^2}{2!}}$ +...+ $ {\dfrac{x^n}{n!}}$ +...$ \left.\vphantom{1+x+\dfrac{x^2}{2!}+\ldots+\dfrac{x^n}{n!}+\ldots}\right)$$ \left(\vphantom{1-x+\dfrac{x^2}{2!}-\ldots+\dfrac{(-x)^n}{n!}+\ldots}\right.$1 - x + $ {\dfrac{x^2}{2!}}$ -...+ $ {\dfrac{(-x)^n}{n!}}$ +...$ \left.\vphantom{1-x+\dfrac{x^2}{2!}-\ldots+\dfrac{(-x)^n}{n!}+\ldots}\right)$.

Прислать комментарий     Решение

Задача 61488  (#11.061)

Тема:   [ Формальные степенные ряды ]
Сложность: 3
Классы: 8,9,10,11

Обращение степенного ряда. Докажите, что если a0$ \ne$ 0, то для ряда F(x) существует ряд F-1(x) = b0 + b1x +...+ bnxn +... такой, что F(x)F-1(x) = 1.

Прислать комментарий     Решение

Задача 61489  (#11.062)

Тема:   [ Формальные степенные ряды ]
Сложность: 3
Классы: 8,9,10,11

Вычислите:

а) (1 + x)-1;     б) (1 - x)-1;    в) (1 - x)-2.
Прислать комментарий     Решение

Задача 61490  (#11.063)

Тема:   [ Формальные степенные ряды ]
Сложность: 3
Классы: 10,11

Пусть F(x) — производящая функция последовательности {an}. Докажите равенство $ \left.\vphantom{a_n=\dfrac{F^{(n)}(x)}{n!}}\right.$an = $ {\dfrac{F^{(n)}(x)}{n!}}$$ \left.\vphantom{a_n=\dfrac{F^{(n)}(x)}{n!}}\right\vert _{x=0}^{}$.

Прислать комментарий     Решение

Задача 61491  (#11.064)

Тема:   [ Формальные степенные ряды ]
Сложность: 3+
Классы: 9,10,11

Вычислите производящие функции следующих последовательностей:

а) an = n;    б) an = n2;    в) an = Cmn.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 33]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .