ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В равнобедренном треугольнике ABC  (AC = BC)  угол при вершине C равен 20°. Биссектрисы углов A и B пересекают боковые стороны треугольника соответственно в точках A1 и B1. Докажите, что треугольник A1OB1 (где O – центр описанной окружности треугольника ABC) является равносторонним.

   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 47]      



Задача 64455  (#1)

Темы:   [ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3
Классы: 7,8,9

В треугольнике ABC  AB = BC. Из точки E на стороне AB опущен перпендикуляр ED на BC. Оказалось, что  AE = ED.  Найдите угол DAC.

Прислать комментарий     Решение

Задача 64456  (#2)

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Симметрия помогает решить задачу ]
Сложность: 3+
Классы: 8,9

В равнобедренном треугольнике ABC  (AC = BC)  угол при вершине C равен 20°. Биссектрисы углов A и B пересекают боковые стороны треугольника соответственно в точках A1 и B1. Докажите, что треугольник A1OB1 (где O – центр описанной окружности треугольника ABC) является равносторонним.

Прислать комментарий     Решение

Задача 64457  (#3)

Темы:   [ Вневписанные окружности ]
[ Три прямые, пересекающиеся в одной точке ]
[ Вписанные и описанные окружности ]
[ Симметрия помогает решить задачу ]
Сложность: 4-
Классы: 8,9

Вневписанная окружность, соответствующая вершине A прямоугольного треугольника ABC  (∠B = 90°),  касается продолжений сторон AB, AC в точках A1, A2 соответственно; аналогично определим точки C1, C2. Докажите, что перпендикуляры, опущенные из точек A, B, C на прямые C1C2, A1C1, A1A2 соответственно, пересекаются в одной точке.

Прислать комментарий     Решение

Задача 64458  (#4)

Темы:   [ Вписанные и описанные окружности ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Симметрия помогает решить задачу ]
Сложность: 4-
Классы: 8,9

Автор: Ивлев Ф.

Дан неравнобедренный треугольник ABC. Точка O – центр его описанной окружности, а точка K – центр описанной окружности ω треугольника BCO. Высота треугольника ABC, проведенная из точки A, пересекает окружность ω в точке P. Прямая PK пересекает описанную окружность треугольника ABC в точках E и F. Докажите, что один из отрезков EP и FP равен отрезку PA.

Прислать комментарий     Решение

Задача 64459  (#5)

Темы:   [ Равные треугольники. Признаки равенства (прочее) ]
[ Признаки и свойства параллелограмма ]
[ Ромбы. Признаки и свойства ]
Сложность: 4-
Классы: 8,9

Точка внутри выпуклого четырёхугольника соединена с вершинами. Получились четыре равных треугольника.
Верно ли, что четырёхугольник – ромб?

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 47]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .