Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

В пространстве имеются 30 ненулевых векторов. Доказать, что среди них найдутся два, угол между которыми меньше 45°.

Вниз   Решение



Кузнечик вначале сидит в точке M плоскости Oxy вне квадрата  0 ≤ x ≤ 1,  0 ≤ y ≤ 1  (координаты M – нецелые, расстояние от M до центра квадрата равно d). Кузнечик прыгает в точку, симметричную M относительно самой правой (с точки зрения кузнечика) вершины квадрата. Докажите, что за несколько таких прыжков кузнечик не сможет удалиться от центра квадрата более чем на 10d.

ВверхВниз   Решение


На плоскости даны две точки A и B. Найдите ГМТ M, для которых AM : BM = k (окружность Аполлония).

ВверхВниз   Решение


Пусть a^b обозначает число ab. В выражении  7^7^7^7^7^7^7  надо расставить скобки, чтобы определить порядок действий (всего будет 5 пар скобок).
Можно ли расставить эти скобки двумя разными способами так, чтобы получилось одно и то же число?

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 5]      



Задача 64509  (#1)

Темы:   [ Выпуклые многоугольники ]
[ Четность и нечетность ]
[ Правило произведения ]
Сложность: 3
Классы: 8,9,10

В выпуклом 2009-угольнике проведены все диагонали. Прямая пересекает 2009-угольник, но не проходит через его вершины.
Докажите, что прямая пересекает чётное число диагоналей.

Прислать комментарий     Решение

Задача 64510  (#2)

Темы:   [ Арифметические действия. Числовые тождества ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9,10

Пусть a^b обозначает число ab. В выражении  7^7^7^7^7^7^7  надо расставить скобки, чтобы определить порядок действий (всего будет 5 пар скобок).
Можно ли расставить эти скобки двумя разными способами так, чтобы получилось одно и то же число?

Прислать комментарий     Решение

Задача 64511  (#3)

Темы:   [ Десятичная система счисления ]
[ Раскладки и разбиения ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9,10

Автор: Замятин В.

Володя хочет сделать набор кубиков одного размера и написать на каждой грани каждого кубика по одной цифре так, чтобы можно было из этих кубиков выложить любое 30-значное число. Какого наименьшего количества кубиков ему для этого хватит? (Цифры 6 и 9 при переворачивании не превращаются друг в друга.)

Прислать комментарий     Решение

Задача 64512  (#4)

Темы:   [ Арифметические действия. Числовые тождества ]
[ Десятичная система счисления ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9,10

Натуральное число увеличили на 10% и снова получили натуральное число. Могла ли при этом сумма цифр уменьшиться ровно на 10%?

Прислать комментарий     Решение

Задача 64513  (#5)

Темы:   [ Ромбы. Признаки и свойства ]
[ Вписанные и описанные окружности ]
[ Поворот помогает решить задачу ]
[ Симметрия помогает решить задачу ]
[ Равнобедренные, вписанные и описанные трапеции ]
Сложность: 4-
Классы: 8,9,10

В ромбе ABCD  ∠А = 120°.  На сторонах BC и CD взяты точки M и N так, что  ∠NAM = 30°.
Докажите, что центр описанной окружности треугольника NAM лежит на диагонали ромба.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .