Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 11 задач
Версия для печати
Убрать все задачи

Сколько сторон может иметь выпуклый многоугольник, все диагонали которого равны?

Вниз   Решение


6 карасей легче 5 окуней, но тяжелее 10 лещей. Что тяжелее – 2 карася или 3 леща?

ВверхВниз   Решение


Фальшивомонетчик Вася изготовил четыре монеты достоинством 1, 3, 4, 7 квача, которые должны весить 1, 3, 4, 7 граммов соответственно. Но одну из этих монет он сделал некачественно – с неправильным весом. Как за два взвешивания на чашечных весах без гирек определить "неправильную" монету?

ВверхВниз   Решение


Существуют ли 1998 различных натуральных чисел, произведение каждых двух из которых делится нацело на квадрат их разности?

ВверхВниз   Решение


Артемон подарил Мальвине букет из аленьких цветочков и чёрных роз. У каждой чёрной розы 4 пестика и 4 тычинки, а на стебле два листка. У каждого аленького цветочка 8 пестиков и 10 тычинок, а на стебле три листка. Листков в букете на 108 меньше, чем пестиков. Сколько тычинок в букете?

ВверхВниз   Решение


В основании прямой призмы лежит прямоугольный треугольник с катетами 6 и 8 . Боковые ребра равны . Найдите объем цилиндра, описанного около этой призмы.


ВверхВниз   Решение


Какая из дробей больше: 29/73 или 291/731?

ВверхВниз   Решение


Положительные числа x, y, z обладают тем свойством, что

arctg x + arctg y + arctg z < $\displaystyle \pi$.

Доказать, что сумма этих чисел больше их произведения.

ВверхВниз   Решение


Среднее арифметическое четырёх чисел равно 10. Если вычеркнуть одно из этих чисел, то среднее арифметическое оставшихся трёх увеличится на 1, если вместо этого вычеркнуть другое число, то среднее арифметическое оставшихся чисел увеличится на 2, а если вычеркнуть третье число, то среднее арифметическое оставшихся увеличится на 3. Как изменится среднее арифметическое трёх оставшихся чисел, если вычеркнуть четвёртое число?

ВверхВниз   Решение


Имеются чашечные весы, которые находятся в равновесии, если разность масс на их чашах не превосходит 1 г, а также гири массами ln 3, ln 4, ..., ln 79 г.
Можно ли разложить все эти гири на чаши весов так, чтобы весы находились в равновесии?

ВверхВниз   Решение


Точка D – середина гипотенузы АВ прямоугольного треугольника ABC,  ∠ВАС = 35°.  Точка B1 симметрична точке B относительно прямой СD.
Найдите угол AB1C.

Вверх   Решение

Задачи

Страница: 1 2 3 >> [Всего задач: 15]      



Задача 64822  (#9.1.1)

Темы:   [ Квадратные уравнения. Формула корней ]
[ Уравнения в целых числах ]
Сложность: 2+
Классы: 8,9,10

Решите уравнение:  x(x + 1) = 2014·2015.

Прислать комментарий     Решение

Задача 64823  (#9.1.2)

Темы:   [ Ромбы. Признаки и свойства ]
[ Неравенство треугольника (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 8,9,10

Из четырёх палочек сложен контур параллелограмма. Обязательно ли из них можно сложить контур треугольника (одна из сторон треугольника складывается из двух палочек)?

Прислать комментарий     Решение

Задача 64824  (#9.1.3)

Темы:   [ Текстовые задачи (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 8,9,10

Три пирата нашли клад, состоящий из 240 золотых слитков общей стоимостью 360 долларов. Стоимость каждого слитка известна и выражается целым числом долларов. Может ли оказаться так, что добычу нельзя разделить между пиратами поровну, не переплавляя слитки?

Прислать комментарий     Решение

Задача 64825  (#9.2.1)

Темы:   [ Задачи на движение ]
[ Делимость чисел. Общие свойства ]
Сложность: 3
Классы: 8,9,10

Марья Петровна идет по дороге со скоростью 4 км/ч. Увидев пенёк, она садится на него и отдыхает одно и то же целое число минут. Михаил Потапович идёт по той же дороге со скоростью 5 км/ч, зато сидит на каждом пеньке в два раза дольше чем Марья Петровна. Вышли и пришли они одновременно. Длина дороги – 11 км. Сколько на ней могло быть пеньков?

Прислать комментарий     Решение

Задача 64826  (#9.2.2)

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Осевая и скользящая симметрии (прочее) ]
[ Вспомогательная окружность ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3+
Классы: 8,9,10

Точка D – середина гипотенузы АВ прямоугольного треугольника ABC,  ∠ВАС = 35°.  Точка B1 симметрична точке B относительно прямой СD.
Найдите угол AB1C.

Прислать комментарий     Решение

Страница: 1 2 3 >> [Всего задач: 15]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .