Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 10 задач
Версия для печати
Убрать все задачи

Слоны, носороги, жирафы. Во всех зоопарках, где есть слоны и носороги, нет жирафов. Во всех зоопарках, где есть носороги и нет жирафов, есть слоны. Наконец, во всех зоопарках, где есть слоны и жирафы, есть и носороги. Может ли быть такой зоопарк, в котором есть слоны, но нет ни жирафов, ни носорогов?

Вниз   Решение


Графики трёх функций  y = ax + a,  y = bx + b  и  y = cx + d  имеют общую точку, причём  a ≠ b.  Обязательно ли  c = d?

ВверхВниз   Решение


В равные углы X1OY и YOX2 вписаны окружности ω1 и ω2, касающиеся сторон OX1 и OX2 в точках A1 и A2 соответственно, а стороны OY – в точках B1 и B2. C1 – вторая точка пересечения A1B2 и ω1, а C2 – вторая точка пересечения A2B1 и ω2. Докажите, что C1C2 – общая касательная к окружностям.

ВверхВниз   Решение


Из цифр 1, 2, 3, 4, 5, 6, 7 составляются всевозможные семизначные числа, в записи которых каждая из этих цифр встречается ровно один раз.
Доказать, что сумма всех таких чисел делится на 9.

ВверхВниз   Решение


Существуют ли шесть таких последовательных натуральных чисел, что наименьшее общее кратное первых трёх из них больше, чем наименьшее общее кратное трёх следующих?

ВверхВниз   Решение


30 команд участвуют в розыгрыше первенства по футболу.
Доказать, что в любой момент состязаний имеются две команды, сыгравшие к этому моменту одинаковое число матчей.

ВверхВниз   Решение


В основании прямой призмы лежит прямоугольный треугольник с катетами 1 и 10 . Боковые ребра равны . Найдите объем цилиндра, описанного около этой призмы.


ВверхВниз   Решение


Найдите все решения ребуса:  АРКА + РКА + КА + А = 2014.  (Различным буквам соответствуют различные цифры, а одинаковым буквам – одинаковые цифры.)

ВверхВниз   Решение


Стороны треугольника равны a, b, c. Три шара попарно касаются друг друга и плоскости треугольника в его вершинах. Найдите радиусы шаров.

ВверхВниз   Решение


В большой квадратный зал привезли два квадратных ковра, сторона одного ковра вдвое больше стороны другого. Когда их положили в противоположные углы зала, они в два слоя накрыли 4 м², а когда их положили в соседние углы, то 14 м². Каковы размеры зала?

Вверх   Решение

Задачи

Страница: 1 2 3 >> [Всего задач: 14]      



Задача 66059

Темы:   [ Текстовые задачи (прочее) ]
[ Системы линейных уравнений ]
Сложность: 3
Классы: 6,7

Саша и Ваня родились 19 марта. Каждый из них отмечает свой день рождения тортом со свечками по количеству исполнившихся ему лет. В тот год, когда они познакомились, у Саши на торте было столько же свечек, сколько у Вани сегодня. Известно, что суммарное количество свечек на четырёх тортах Вани и Саши (тогда и сегодня) равно 216. Сколько лет исполнилось Ване сегодня?

Прислать комментарий     Решение

Задача 66060

Темы:   [ Наглядная геометрия ]
[ Неопределено ]
Сложность: 3
Классы: 6,7

В большой квадратный зал привезли два квадратных ковра, сторона одного ковра вдвое больше стороны другого. Когда их положили в противоположные углы зала, они в два слоя накрыли 4 м², а когда их положили в соседние углы, то 14 м². Каковы размеры зала?

Прислать комментарий     Решение

Задача 66061

Темы:   [ Уравнения в целых числах ]
[ Простые числа и их свойства ]
[ Четность и нечетность ]
[ Симметрия помогает решить задачу ]
Сложность: 3
Классы: 6,7

Петров забронировал квартиру в доме-новостройке, в котором пять одинаковых подъездов. Изначально подъезды нумеровались слева направо, и квартира Петрова имела номер 636. Потом застройщик поменял нумерацию на противоположную (справа налево, см. рисунок). Тогда квартира Петрова стала иметь номер 242. Сколько квартир в доме? (Порядок нумерации квартир внутри подъезда не изменялся.)

Прислать комментарий     Решение

Задача 108887

Темы:   [ Вспомогательные равные треугольники ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
[ Четырехугольники (прочее) ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3
Классы: 8,9

KLMN – выпуклый четырёхугольник, в котором равны углы K и L. Серединные перпендикуляры к сторонам KN и LM пересекаются на стороне KL.
Докажите, что в этом четырёхугольнике равны диагонали.

Прислать комментарий     Решение

Задача 66058

Темы:   [ Задачи с неравенствами. Разбор случаев ]
[ Уравнения в целых числах ]
Сложность: 3+
Классы: 6,7

В Стране дураков ходят монеты в 1, 2, 3, ..., 19, 20 сольдо (других нет). У Буратино была одна монета. Он купил мороженое и получил одну монету сдачи. Снова купил такое же мороженое и получил сдачу тремя монетами разного достоинства. Буратино хотел купить третье такое же мороженое, но денег не хватило. Сколько стоит мороженое?

Прислать комментарий     Решение

Страница: 1 2 3 >> [Всего задач: 14]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .