ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Туры:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На хорде KL окружности радиуса 7 взята точка M, KM = 5, ML = 6. Найдите максимальное из расстояний от точки M до точек окружности. Даны положительные числа x, y, z. Докажите неравенство Хорды AC и BD окружности пересекаются в точке P. Перпендикуляры к AC и BD в точках C и D,
соответственно пересекаются в точке Q . В трапеции ABCD (AD || BC) из точки Е – середины CD провели перпендикуляр EF к прямой AB. Найдите площадь трапеции, если АВ = 5, EF = 4. Шесть кружков последовательно соединили отрезками. На каждом отрезке записали некоторое число, а в каждом кружке – сумму двух чисел, записанных на входящих в него отрезках. После этого стёрли все числа на отрезках и в одном из кружков (см. рис.). Можно ли найти число, стёртое в кружке? Окружность касается сторон AB, BC, CD параллелограмма ABCD в точках K, L, M соответственно. По кругу стоят 10 детей разного роста. Время от времени один из них перебегает на другое место (между какими-то двумя детьми). Дети хотят как можно скорее встать по росту в порядке возрастания по часовой стрелке (от самого низкого к самому высокому). Какого наименьшего количества таких перебежек им заведомо хватит, как бы они ни стояли изначально? |
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 46]
Произвольный треугольник разрезали на равные треугольники прямыми, параллельными сторонам (как показано на рисунке).
Квадратная коробка конфет разбита на 49 равных квадратных ячеек. В каждой ячейке лежит шоколадная конфета – либо чёрная, либо белая. За один присест Саша может съесть две конфеты, если они одного цвета и лежат в соседних по стороне или по углу ячейках. Какое наибольшее количество конфет гарантированно может съесть Саша, как бы ни лежали конфеты в коробке?
Даны две концентрические окружности и точка A внутри меньшей из них. Угол величиной α с вершиной в A высекает на этих окружностях по дуге. Докажите, что если дуга большей окружности имеет угловой размер α, то и дуга меньшей имеет угловой размер α.
По кругу стоят 10 детей разного роста. Время от времени один из них перебегает на другое место (между какими-то двумя детьми). Дети хотят как можно скорее встать по росту в порядке возрастания по часовой стрелке (от самого низкого к самому высокому). Какого наименьшего количества таких перебежек им заведомо хватит, как бы они ни стояли изначально?
Графики двух квадратных трёхчленов пересекаются в двух точках. В обеих точках касательные к графикам перпендикулярны.
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 46]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке