Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

Автор: Ильичев В.

По одной стороне бесконечного коридора расположено бесконечное количество комнат, занумерованных числами от минус бесконечности до плюс бесконечности. В комнатах живут 9 пианистов (в одной комнате могут жить несколько пианистов), кроме того, в каждой комнате находится по роялю. Каждый день какие-то два пианиста, живущие в соседних комнатах (k-й и (k+1)-й), приходят к выводу, что они мешают друг другу, и переселяются соответственно в (k–1)-ю и (k+2)-ю комнаты. Докажите, что через конечное число дней эти переселения прекратятся. (Пианисты, живущие в одной комнате, друг другу не мешают.)

Вниз   Решение


Построить выпуклый четырёхугольник, зная длины всех сторон и отрезка, соединяющего середины диагоналей.

ВверхВниз   Решение


Автор: Анджанс А.

Докажите, что существует бесконечное число пар таких соседних натуральных чисел, что разложение каждого из них содержит любой простой сомножитель не менее чем во второй степени. Примеры таких пар чисел:  (8, 9),  (288, 289).

ВверхВниз   Решение


Из вершин основания тетраэдра в боковых гранях провели высоты, а затем в каждой из боковых граней основания двух лежащих в ней высот соединили прямой. Докажите, что эти три прямые параллельны одной плоскости.

ВверхВниз   Решение


Два квадрата расположены как на рисунке, отмеченные отрезки равны. Докажите, что треугольник BDG равнобедренный.

ВверхВниз   Решение


Посреди пустого бассейна стоит квадратная платформа 50 × 50 сантиметров, расчерченная на клеточки 10× 10 см. На клетки платформы Лена ставит башенки из кубиков 10× 10× 10 см. Потом Таня включает воду.

Если высоты башенок были такие, как в таблице справа, то при уровне воды 5 см был 1 остров, при уровне воды 15 см было два острова (если острова «граничат по углу», то считаются отдельными островами), а при уровне воды 25 см все башенки оказались закрыты водой и стало 0 островов.

Придумайте, какие башенки из кубиков можно поставить, чтобы количество островов было следующим:

Уровень воды (см) 515253545
Количество островов25250

В ответе напишите в каждой клетке квадрата 5 на 5, сколько кубиков на ней стоит.

ВверхВниз   Решение


а) Во всех клетках квадрата 20×20 стоят солдатики. Ваня называет число d, а Петя переставляет солдатиков так, чтобы каждый передвинулся на расстояние не меньше d (расстояние берётся между центрами старой и новой клеток). При каких d это возможно?
б) Эта же задача для квадрата 21×21.

ВверхВниз   Решение


Внутри клетчатого прямоугольника периметра 50 клеток по границам клеток вырезана прямоугольная дырка периметра 32 клетки (дырка не содержит граничных клеток). Если разрезать эту фигуру по всем горизонтальным линиям сетки, получится 20 полосок шириной в 1 клетку. А сколько полосок получится, если вместо этого разрезать её по всем вертикальным линиям сетки? (Квадратик 1 × 1 — это тоже полоска!)

ВверхВниз   Решение


Около прямоугольника $ABCD$ описана окружность. На меньшей дуге $BC$ окружности взята произвольная точка $E$. К окружности проведена касательная в точке $B$, пересекающая прямую $CE$ в точке $G$. Отрезки $AE$ и $BD$ пересекаются в точке $K$. Докажите, что прямые $GK$ и $AD$ перпендикулярны.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 8]      



Задача 66666  (#8.1)

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Вписанные и описанные окружности ]
[ Вспомогательные равные треугольники ]
Сложность: 3
Классы: 8,9

В прямоугольном треугольнике $ABC$ ($\angle C=90^{\circ}$) вписанная окружность касается катета $BC$ в точке $K$. Докажите, что хорда вписанной окружности, высекаемая прямой $AK$ в два раза больше, чем расстояние от вершины $C$ до этой прямой.
Прислать комментарий     Решение


Задача 66667  (#8.2)

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Четыре точки, лежащие на одной окружности ]
[ Вписанные четырехугольники ]
Сложность: 3
Классы: 8,9

Около прямоугольника $ABCD$ описана окружность. На меньшей дуге $BC$ окружности взята произвольная точка $E$. К окружности проведена касательная в точке $B$, пересекающая прямую $CE$ в точке $G$. Отрезки $AE$ и $BD$ пересекаются в точке $K$. Докажите, что прямые $GK$ и $AD$ перпендикулярны.
Прислать комментарий     Решение


Задача 66668  (#8.3)

Темы:   [ Углы между биссектрисами ]
[ Вписанные четырехугольники ]
[ Теорема синусов ]
Сложность: 3
Классы: 8,9

В треугольнике $ABC$ угол $A$ равен $60^{\circ}$, $AA'$, $BB'$, $CC'$ – биссектрисы. Докажите, что $\angle B'A'C'\leq 60^{\circ}$.
Прислать комментарий     Решение


Задача 66669  (#8.4)

Тема:   [ Системы точек и отрезков. Примеры и контрпримеры ]
Сложность: 4-
Классы: 8,9

Автор: Saghafian M.

Найдите все такие конфигурации из шести точек общего положения на плоскости, что треугольник, образованный любыми тремя из них, равен треугольнику, образованному тремя остальными.
Прислать комментарий     Решение


Задача 66670  (#8.5)

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Средняя линия треугольника ]
Сложность: 3
Классы: 8,9

На стороне $AB$ квадрата $ABCD$ вне его построен равнобедренный треугольник $ABE$ ($AE=BE$). Пусть $M$ – середина $AE$, $O$ – точка пересечения $AC$ и $BD$, $K$ – точка пересечения $ED$ и $OM$. Докажите, что $EK=KO$.
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .