ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Уткин А.

В треугольнике $ABC$ $AL_a$, $BL_b$, $CL_c$ – биссектрисы, $K_a$ – точка пересечения касательных к описанной окружности в вершинах $B$ и $C$; $K_b$, $K_c$ определены аналогично. Докажите, что прямые $K_aL_a$, $K_bL_b$ и $K_cL_c$ пересекаются в одной точке.

   Решение

Задачи

Страница: << 1 2 3 4 5 >> [Всего задач: 24]      



Задача 66784  (#16 [9-11 кл])

Темы:   [ Радикальная ось ]
[ Прямая Эйлера и окружность девяти точек ]
Сложность: 4
Классы: 9,10,11

В треугольнике $ABC$ $AH_1$ и $BH_2$ – высоты; касательная к описанной окружности в точке $A$ пересекает $BC$ в точке $S_1$, а касательная в точке $B$ пересекает $AC$ в точке $S_2$; $T_1$ и $T_2$ – середины отрезков $AS_1$ и $BS_2$. Докажите, что $T_1T_2$, $AB$ и $H_1H_2$ пересекаются в одной точке.
Прислать комментарий     Решение


Задача 66785  (#17 [10-11 кл])

Темы:   [ Инверсия помогает решить задачу ]
[ Радикальная ось ]
Сложность: 4+
Классы: 9,10,11

Даны три окружности. Первая и вторая пересекаются в точках $A_0$ и $A_1$, вторая и третья – в точках $B_0$ и $B_1$, третья и первая – в точках $C_0$ и $C_1$. Пусть $O_{i,j,k}$ – центр описанной окружности треугольника $A_i B_j C_k$. Через все пары точек вида $O_{i,j,k}$ и $O_{1-i,1-j,1-k}$ провели прямые. Докажите, что эти 4 прямые пересекаются в одной точке или параллельны.
Прислать комментарий     Решение


Задача 66786  (#18 [10-11 кл])

Темы:   [ Описанные четырехугольники ]
[ Вспомогательные подобные треугольники ]
Сложность: 4
Классы: 9,10,11

Четырехугольник $ABCD$ без равных и без параллельных сторон описан около окружности с центром $I$. Точки $K$, $L$, $M$ и $N$ – середины сторон $AB$, $BC$, $CD$ и $DA$. Известно, что $AB\cdot CD=4IK\cdot IM$. Докажите, что $BC\cdot AD=4IL\cdot IN$.
Прислать комментарий     Решение


Задача 66787  (#19 [10-11 кл])

Темы:   [ Три прямые, пересекающиеся в одной точке ]
[ Теорема синусов ]
[ Теоремы Чевы и Менелая ]
Сложность: 3+
Классы: 9,10,11

Автор: Уткин А.

В треугольнике $ABC$ $AL_a$, $BL_b$, $CL_c$ – биссектрисы, $K_a$ – точка пересечения касательных к описанной окружности в вершинах $B$ и $C$; $K_b$, $K_c$ определены аналогично. Докажите, что прямые $K_aL_a$, $K_bL_b$ и $K_cL_c$ пересекаются в одной точке.
Прислать комментарий     Решение


Задача 66788  (#20 [10-11 кл])

Темы:   [ Прямая Симсона ]
[ Вписанные и описанные окружности ]
Сложность: 4+
Классы: 10,11

В треугольнике $ABC$ $O$ – центр описанной окружности, $H$ – ортоцентр, $M$ – середина $AB$. Прямая $MH$ пересекает прямую, проходящую через $O$ и параллельную $AB$, в точке $K$, лежащей на описанной окружности треугольника. Точка $P$ – проекция $K$ на $AC$. Докажите, что $PH\parallel BC$.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 >> [Всего задач: 24]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .