ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи а) Есть три одинаковых больших сосуда. В одном – 3 л сиропа, в другом – 20 л воды, третий – пустой. Можно выливать из одного сосуда всю жидкость в другой или в раковину. Можно выбрать два сосуда и доливать в один из них из третьего, пока уровни жидкости в выбранных сосудах не сравняются. Как получить 10 л разбавленного 30%-го сиропа? б) То же, но воды – N л. При каких целых N можно получить 10 л разбавленного 30%-го сиропа? Докажите, что из любого выпуклого четырёхугольника можно вырезать три его копии вдвое меньшего размера. Прямоугольник 1×3 будем называть триминошкой. Петя и Вася независимо друг от друга разбивают доску 20×21 на триминошки. Затем они сравнивают полученные разбиения, и Петя платит Васе столько рублей, сколько триминошек в этих двух разбиениях совпали (оказались на одинаковых позициях). Какую наибольшую сумму выигрыша может гарантировать себе Вася независимо от действий Пети? Два треугольника пересекаются по шестиугольнику, который отсекает от них 6 маленьких треугольников. Радиусы вписанных окружностей этих шести треугольников равны. Дан отрезок [0, 1]. За ход разрешается разбить любой из имеющихся отрезков точкой на два новых отрезка и записать на доску произведение длин этих двух новых отрезков. |
Страница: 1 [Всего задач: 5]
Натуральное число $k$ назовём интересным, если произведение первых $k$ простых чисел делится на $k$ (например, произведение первых двух простых чисел – это 2·3 = 6, и 2 – число интересное).
Дан куб. Три плоскости, параллельные граням, разделили его на 8 параллелепипедов. Их покрасили в шахматном порядке. Объёмы чёрных параллелепипедов оказались равны 1, 6, 8, 12.
В белом клетчатом квадрате 2021×2021 требуется закрасить чёрным две клетки. После этого через каждую минуту одновременно закрашиваются чёрным все клетки, которые граничат по стороне хоть с одной из уже закрашенных. Ваня выбрал две начальные клетки так, чтобы весь квадрат закрасился как можно быстрее. Через сколько минут закрасился квадрат?
Дан отрезок $AB$. Точки $X, Y, Z$ в пространстве выбираются так, чтобы $ABX$
был правильным треугольником, а $ABYZ$ – квадратом.
Дан отрезок [0, 1]. За ход разрешается разбить любой из имеющихся отрезков точкой на два новых отрезка и записать на доску произведение длин этих двух новых отрезков.
Страница: 1 [Всего задач: 5]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке